首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Photo‐induced thiol‐ene crosslinked polymeric networks have been extensively explored in constructing a variety of new materials with enhanced mechanical properties for optical, biomedical, and sensing applications. Toward the broad applications, however, tunable mechanical properties are greatly desired. Here, an effective approach utilizing high‐molecular‐weight methacrylate copolymers having pendant thiol and vinyl groups (MCPsh and MCPenes) to modulate thermal and mechanical properties of photo‐induced thiol‐ene crosslinked materials is reported. The MCP copolymers are synthesized by an industrially friendly polymerization method, followed by post‐modification including either a facile coupling reaction or reductive cleavage. Upon UV irradiation, thiol‐ene reactive blends of MCPsh and MCPenes yield highly crosslinked materials through the formation of flexible sulfide linkages. These polysulfide‐crosslinked materials based on rigid MCP backbones exhibit enhanced mechanical properties. Further, their thermal and mechanical properties are tuned by modulating monomer compositions of MCPs as well as varying numbers of pendant SH or vinyl groups (i.e., extent of crosslinking densities). This approach is versatile and effective for development of high performance polymeric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3060–3068  相似文献   

2.
During the curing process of a liquid‐crystalline epoxy resin, a relatively strong magnetic field was applied, and the thermomechanical properties of the cured resin were investigated. The network orientation and mechanical properties of the cured system were evaluated with wide‐angle X‐ray diffraction, dynamic mechanical analysis, and fracture toughness testing. The cured system was found to have an anisotropic network structure, which arranged along the applied field, and the anisotropy was reflected in the thermomechanical properties. In particular, the fracture toughness of the system dramatically increased when the network chains were arranged across the direction of the crack propagation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 758–765, 2004  相似文献   

3.
Three series of core‐shell hydroxyl‐functionalized latexes were synthesized and then crosslinked with a cycloaliphatic diepoxide. The same amount of hydroxyl functional monomer was added during the core stage, shell stage, or partitioned equally between the core and the shell. The morphology of the latexes was examined with transmission electron microscopy and contact‐angle measurement. The stress‐strain behavior, viscoelastic properties, and water adsorption were evaluated for the latex films as a function of hydroxyl location. The location of hydroxyl groups within latex particles appeared to be dependent on the introduction mode of hydroxyl functional monomers. The introduction of hydroxyl groups during the shell polymerization resulted in a higher crosslinking density but a lower Tukon hardness and tensile properties. Not surprisingly, distribution of hydroxyl groups in both core and shell polymerization provided the lowest water adsorption and impact resistance as well as the highest tensile elongation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4256–4265, 2002  相似文献   

4.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

5.
The morphology–toughness relationship of vinyl ester/cycloaliphatic epoxy hybrid resins of interpenetrating network (IPN) structures was studied as a function of the epoxy hardening. The epoxy was crosslinked via polyaddition reactions (with aliphatic and cycloaliphatic diamines), cationic homopolymerization (via a boron trifluoride complex), and maleic anhydride. Maleic anhydride worked as a dual‐phase crosslinking agent by favoring the formation of a grafted IPN structure between the vinyl ester and epoxy. The type of epoxy hardener strongly affected the IPN morphology and toughness. The toughness was assessed by linear elastic fracture mechanics, which determined the fracture toughness and energy. The more compact the IPN structure was, the lower the fracture energy was of the interpenetrated vinyl ester/epoxy formulations. This resulted in the following toughness ranking: aliphatic diamine > cycloaliphatic diamine ≥ boron trifluoride complex > maleic anhydride. For IPN characterization, the width of the entangling bands and the surface roughness parameters were considered. Their values were deduced from atomic force microscopy scans taken on ion‐etched surfaces. More compact, less rough IPN‐structured resins possessed lower toughness parameters than less compact, rougher structured ones. The latter were less compatible according to dynamic mechanical thermal and thermogravimetric analyses. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5471–5481, 2004  相似文献   

6.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

7.
In this article, the electromechanical properties of silver‐in‐epoxy conductive adhesives with the polyaniline (PANI) micron particles as cofillers have been investigated. PANI is a conductive polymer and has a moderate conductivity in between those of silver and epoxy. It was found that PANI can be used to tailor both the adhesive's electrical contact resistance and its relaxation behavior; however, the effects of adding PANI were complex. The addition of small amount of PANI (2 wt %) dramatically increased the contact resistance; it might block the electrical contacts among silver flakes and was not able to form a continuous path among themselves. The addition of more PANI showed a moderate increase in contact resistance, which increased with the weight fraction of PANI from 6 to 15 wt %. Interdependent behavior of compressive strain and relaxation in electrical contact resistance is characterized to evaluate the origin of this relaxation. The addition of PANI made the relaxation in electrical contact resistance more sensitive to the compressive strain and the electromechanical coupling to deviate from the linear relationship. These research findings provide insights into the way to use PANI to tailor the electromechanical properties of the adhesive bonds or joints in the development of advanced functional devices. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013, 51, 1448–1455  相似文献   

8.
The conjugation of peptides/proteins and synthetic polymers is a useful strategy to overcome some of the limitations related to the use of the individual components. This review will highlight two aspects: enhanced structural control at the nanometer level and improved performance, in particular with respect to biomedical applications. In the former case, peptide sequences are mainly used to mediate self-assembly of synthetic polymers. In the latter case, conjugation of an appropriate synthetic polymer to a pharmaceutically active peptide/protein can, for example, prevent premature enzymatic degradation and enhance blood circulation times, which is therapeutically advantageous.  相似文献   

9.
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008  相似文献   

10.
The effects of quantity of graphene and carbon nanotube‐based fillers and their pendant functional groups on the shear properties of a thermoset epoxy were investigated. Two novel functionalized graphenes, one with epoxy functionality and the other with an amine, are synthesized for this purpose. Nanocomposites are prepared at concentrations of 0.5, 1, 2, 3, 5, and 10 wt % and the effects of functionalization on the homogeneity of dispersion and the shear mechanical properties are investigated. The properties of the epoxy nanocomposites containing epoxy‐ and amine‐functionalized graphene are compared with those containing graphene oxide, Claisen‐functionalized graphene, neat multiwalled carbon nanotubes (MWNTs), three types of epoxy‐functionalized MWNT (EpCNT), and the unfilled epoxy. One of the EpCNT ( EpCNT3 ) was found to increase the plateau shear storage modulus by 136% (1.67–3.94 MPa) and the corresponding loss modulus by almost 400% at a concentration of 10 wt %. Several other fillers were also found to increase shear properties at certain concentrations. A hybrid system of EpCNT3 and graphite was also studied, which improved the storage modulus by up to 51%. SEM images reveal a correlation between thorough dispersion of the additive and enhancement of shear modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 997–1006  相似文献   

11.
12.
An acrylic–silica hybrid polymeric nanocomposite, comprising well‐distributed silica nanoparticles in acrylic matrix, has been synthesized at a markedly rapid rate from a dendritic acrylic oligomer (DAO) and an acrylic‐functionalized silica (A‐silica) via UV‐curing. A‐silica was made by functioning colloidal silica nanoparticles with 3‐methacryloxypropyltrimethoxysilane (MATMS) and DAO was formed by reacting 1,5‐diamino‐2‐methylpentane (MPMDA) with trimethylopropane triacrylate (TMPTA). The MATMS has been found either doubly or singly bonded to silica nanoparticles but not triply bonded, and the inclusion of MATMS into the siloxane network structure increases the size of silica nanoparticles. The well distribution of A‐silica and its good compatibility with DAO cause an increase in Td of the acrylic–silica hybrid material. Silica nanoparticles are too small to cause any significant light scattering, and do not have deleterious effects on transparency. The “hybrid‐on‐polyethylene terephathalate” films exhibited satisfactory hardness and surface roughness because of silica nanoparticles. The preparation as well as the characterization of the constituting species and the final hybrid material are described in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8149–8158, 2008  相似文献   

13.
Hybrid organic/inorganic nanocomposites based on polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals and nylon 6 were prepared via melt mixing. Two structurally and chemically different POSS molecules, a closed cage, nonpolar octaisobutyl POSS (Oib‐POSS) and an open cage, polar trisilanolphenyl POSS (Tsp‐POSS) with differing predicted solubility parameters were evaluated in the nylon matrix. Surface analysis, including quasi‐static and dynamic nanoindentation and nanotribological techniques, revealed exceptional improvements in modulus and hardness along with significant reductions in friction. Additionally, surface wetting characteristics of the nylon were reversed, with POSS incorporation yielding low surface energy, highly hydrophobic surfaces. AFM, TEM/EDAX, spectroscopic techniques and thermomechanical analysis were used to evaluate nanoscale dispersion and bulk properties of the composites. Both POSS molecules exhibit preferential surface segregation behavior in the nylon matrix. Tsp‐POSS, with its higher predicted solubility in nylon, exhibited enhanced dispersion and tribomechanical properties at both nano and bulk scale. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1088–1102, 2009  相似文献   

14.
A series of poly(butylene terephthalate) copolyesters containing 5‐tert‐butyl isophthalate units up to 50 mol %, as well as the homopolyester entirely made of these units, were prepared by polycondensation from a melt. The microstructure of the copolymers was determined by NMR to be random for the whole range of compositions. The effect exerted by the 5‐tert‐butyl isophthalate units on thermal, tensile, and gas transport properties was evaluated. Both the melting temperature (Tm) and crystallinity were found to decrease steadily with copolymerization, whereas the glass‐transition temperature (Tg) increased and the polyesters became more brittle. Permeability and solubility slightly increased with the content in substituted isophthalic units, whereas the diffusion coefficient remained practically constant. For the homopolyester poly(5‐tert‐butyl isophthalate), all these properties were found to deviate significantly from the general trend displayed by copolyesters, suggesting that a different structure in the solid state is likely adopted in this case. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 92–100, 2005  相似文献   

15.
A propargyl ether‐containing benzoxazine (4) was prepared from a potassium carbonate‐catalyzed nucleophilic substitution of propargyl bromide and a phenolic OH‐containing benzoxazine (3) , which was prepared from 1‐(4‐hydroxyphenyl)‐1‐(4‐aminophenyl)‐1‐(6‐oxido‐6H ‐dibenz <c,e><1,2> oxaphosphorin‐6‐yl)ethane (1) by a three‐step procedure. The curing reactions of (4) were monitored by IR and DSC. A reaction mechanism was proposed based on the observation. Benzoxazines (3) and (4) were applied as epoxy curing agents. The microstructure and the structure‐property relationship of the resulting thermosets are discussed. The double‐strand structure in (4) ‐cured epoxy thermosets afforded higher crosslinking density, and led to higher thermal properties. In addition, the (4) ‐cured epoxy thermosets possess half the amount of highly polar hydroxyl groups than those of the (3) ‐cured epoxy thermosets, resulting in a lower dielectric constant, dissipation factor, and water absorption. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1359–1367  相似文献   

16.
Several kinds of organic–inorganic hybrids were synthesized from an epoxy resin and a silane alkoxide with a primary amine‐type curing agent or tertiary amine curing catalyst. In the hybrid systems cured with the primary amine‐type curing agent, the storage modulus in the high‐temperature region increased, and the peak area of the tan δ curve decreased. Moreover, the mechanical properties were improved by the hybridization of small amounts of the silica network. However, these phenomena were not observed in the hybrid systems cured with the tertiary amine catalyst. The differences in the network structures of the hybrid materials with the different curing processes were characterized with Fourier transform infrared (FTIR). In the hybrid systems cured with the primary amine‐type curing agent, FTIR results showed the formation of a covalent bond between silanol and hydroxyl groups that were generated by the reaction of an epoxy group with an active hydrogen of the primary amine. However, this phenomenon was not observed in the hybrids cured with the tertiary amine. The hybrids with the primary amine showed a homogeneous microstructure in transmission electron microscopy observations, although the hybrids cured with the tertiary amine showed a heterogeneous structure. These results mean that the differences in the interactions between the organic and inorganic phases significantly affect the properties and microstructures of the resultant composites. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1071–1084, 2001  相似文献   

17.
The conversion of poly(amic acid) into polyimide (PI) was achieved with far‐infrared radiation (FIR) and conventional thermal treatments. The structure and properties of PI films during different stages of imidization were studied with Fourier transform infrared spectroscopy, weight‐loss analysis during imidization, tensile property measurements, and dynamic mechanical thermal analysis. The effects of the imidization degree, postimidization, and solvent on the thermal and mechanical properties of PI films were quantitatively investigated. The corresponding structural changes were also examined. The experimental results showed that the imidization process proceeded more quickly and more completely in an FIR oven than in a conventional oven. A prolonged FIR treatment at a lower temperature (25–100 °C) accelerated the imidization process. The tensile stress–strain curves had a fanlike distribution with the development of the FIR imidization process and a fishtail distribution with conventional thermal imidization. During FIR imidization, the best tensile properties were obtained at 340 °C, and thermooxidative degradation occurred at about 420 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2490–2501, 2004  相似文献   

18.
A self‐made low‐frequency vibration‐assisted injection‐molding (VAIM) device was adopted to explore the relationship between mechanical property and morphology for high‐density polyethylene injected moldings. The main processing variables for the VAIM are vibration frequency and vibration pressure amplitude, and tensile properties and morphology were investigated under different VAIM processing conditions with conventional injection molding for comparison. The moldings prepared by VAIM exhibit a very well defined laminated morphology composed of a layered structure with enhanced crystallinity. Increased with vibration frequency at constant vibration pressure amplitude, the shish‐kebab structure is exhibited in the shear layer of the specimen prepared by VAIM, whereas row nucleation lamella exists in the same layer produced by enhanced vibration pressure amplitude at a constant vibration frequency. These oriented structures and enhanced crystallinity, confirmed by scanning electron microscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry, serve to obtain stronger injection moldings. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 13–21, 2005  相似文献   

19.
Relation between structure and properties is studied for polypropylene (PP) containing 1,3:2,4‐di‐benzylidene sorbitol (DBS) that forms network structure composed of nanofibrils in a molten PP. It is found that the aggregation state of DBS, which can be controlled by the applied flow field and thermal history, affects the spherulite texture of PP and thus the transparency. When injection‐molded products, in which the nanofibrils of DBS orient to the flow direction, are reprocessed at 180 °C, that is, lower temperature than the melting point of DBS, the obtained material shows high level of transparency, although it has been believed that sorbitol‐derivatives have to be melted and dissolved into the molten PP at high temperature, for example, 240 °C. Further, it is found that the particle flow occurs in the blend at 180 °C. The applied shear force generates the particles, that is, flow units, by the fragmentation of the network structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 41–47, 2008  相似文献   

20.
Nano‐sized epoxy oligosiloxanes (EO) were prepared by condensation reaction between 3‐glycidoxypropyltrimethoxysilane (GPTS) and Diphenylsilandiol (DPSD). Through a composition change of GPTS and DPSD, EO of various structure and sizes were obtained. The molecular structure and size of EO synthesized were investigated by experimental measurements. Regardless of their composition, molecular structure of EO was linear or branch. The amount of species of high molecular weight and their molecular size increased with addition of DPSD. We confirmed that epoxy groups of EO were thermally cured using a thermal initiator and curing agent. Finally, we fabricated transparent epoxy‐based hybrimer films by thermal curing of EO resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 756–763, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号