首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study examines the dependence of the sputter rate and the transient width (ztr) as a function of Cs+ primary ion energy (impact energy (Ep) = 320 eV, 500 eV and 1 keV) and incident angles between 0 and 70° . The instrument used was the ATOMIKA 4500 SIMS depth profiler and the sample was Si with ten delta layers of Si0.7 Ge0.3. We observed the narrowest transient widths of between 1.4 and 2.0 nm apparent depth. This was achieved at incident angles (θ) of 30–50° . An extended transient effect was observed when profiled at θ > 50° . Below this incident angle, the transient width is less than twice the penetration depth (ztr < 2Rnorm). At minimum ztr, ztrRnorm. The detection sensitivity is best achieved at θ ≈ 30° for all energies investigated. The sputter rate is lowest at normal incidence, rising gradually to a maximum at θ ≈ 50–60° . This is similar to that observed with ultralow‐energy O2+ primary ion beams. 1 At ultralow energies, reducing Ep does not have a significant effect in reducing ztr. We conclude that for Ep < 1 keV, the optimum condition to achieve minimum ztr while maintaining good sensitivity and high sputter rate is at θ ≈ 30° . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The sputter damage profiles of Si(100) by low‐energy O2+ and Ar+ ion bombardment at various angles of incidence were measured using medium‐energy ion scattering spectroscopy. It was observed that the damaged Si surface layer can be minimized down to 0.5–0.6 nm with grazing‐incident 500 eV Ar+ and O2+ ions at 80°. To illustrate how the damaged layer thickness can be decreased down to 0.5 nm, molecular dynamics simulations were used. The SIMS depth resolution estimated with trailing‐edge decay length for a Ga delta‐layer in Si with grazing‐incident 650 eV O2+ was 0.9 nm, which is in good agreement with the measured damaged layer thickness. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Molecular depth profiling of polymers by secondary ion mass spectrometry (SIMS) has focused on the use of polyatomic primary ions due to their low penetration depth and high damage removal rates in some polymers. This study is the third in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to assess 5 keV SF5+‐induced damage of ~90 nm thick spin‐cast poly(2‐hydroxyethyl methacrylate) (PHEMA) and ~130 nm thick trifluoroacetic anhydride‐derivatized PHEMA (TFAA‐PHEMA) films. The degradation of these polymers under extended SF5+ bombardment (~2 × 1014 ions cm?2) was compared to determine the effect of the pendant group chemistry on their degradation. The sputter rate and ion‐induced damage accumulation rate of PHEMA were similar to a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that the addition of a terminal hydroxyl group to the alkyl pendant group does not markedly change the stability of poly(n‐alkyl methacrylates) under SF5+ bombardment. The sputter rate and ion‐induced damage accumulation rate of TFAA‐PHEMA were much higher than a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that derivatization of the terminal hydroxyl group can significantly reduce degradation of the polymer under SF5+ bombardment. This result is in good agreement with the literature on the thermal and radiation‐induced degradation of fluorinated poly(alkyl methacrylates), which suggests that the electron‐withdrawing fluorinated pendant group increases the probability of depolymerization. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Good accuracy in depth profile analyses of nitrogen in ultrathin oxynitride films is desirable for process development and routine process monitoring. Low energy SIMS is one of the techniques that has found success in the accurate characterization of thin oxynitride films. This work investigated the artifacts in a typical depth profile analysis of nitrogen with the current SIMS technique and the ways to improve the accuracy by selecting optimal analytical conditions. It was demonstrated that surface roughness developed rapidly in a SiO2/Si stack when it was bombarded with an O2+ beam at 250 eV and angle of incidence from 70 to 79° . The roughness caused distortion in the measured depth profiles of nitrogen and the major component elements. However, the above roughness and the distortion in the depth profiles can be eliminated by using a 250 eV O2+ beam at an angle of incidence above 80° . Depth profile analyses with a 250 eV 83° O2+ beam exhibited minimal surface roughening and insignificant variation in the secondary ion yield of SiN? from SiO2 bulk to the SiO2/Si interface, facilitating an accurate analysis of nitrogen distribution in a SiO2/Si stack. In addition, depth profiles of the major component elements such as 18O? and 28Si? delivered clear information on the location of the SiO2/Si interface. Using the new approach, we compared nitrogen distribution in thin SiNO films with the decoupled‐plasma nitridation (DPN) at various powers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The initial oxidation of clean, polycrystalline α‐Th from background CO/CO2 and saturation of the Th surface by O2 has been examined by angle‐resolved Auger electron spectroscopy (ARAES) and time of flight secondary ion mass spectrometry (ToF‐SIMS). Following dissociative adsorption of very low doses of background CO/CO2 (<1 L), the carbon surface population was dominant and spontaneously formed thorium carbide. The accompanying oxygen population increased at a rate roughly one‐third that of the carbon, suggesting simultaneous oxygen incorporation into the bulk. To further corroborate the surface kinetics of adsorbed oxygen, O2 was admitted, following heating and sputter cleaning of the Th; some oxygen atoms continued to diffuse into the bulk until formation of stoichiometric ThO2 at ~37 L. ARAES measurements showed an oxygen concentration gradient in the near‐surface region confirming rapid oxygen incorporation at low doses; however, once the surface is saturated, virtually no variation in the oxygen intensity is observed. AES and ToF‐SIMS depth profiling revealed complete oxide formation to a depth of 2 nm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Dependences of the depth resolution in Auger electron spectroscopy sputter‐depth profiling of a GaAs/AlAs superlattice reference material on the incident angle and energy of primary Ar+ ions were investigated. The results revealed that the depth resolution is improved for the lower primary energy as a square root of the primary energy of ions at both the incident angles of 50° and 70° , except for 100 eV at 50° , where the significant deterioration of the depth resolution is induced by the preferential sputtering of As in AlAs, and the difference in the etching rate between GaAs and AlAs. The deterioration of the depth resolution, i.e. the difference in the etching rate and the preferential sputtering, observed for 100 eV at 50° was suppressed by changing the incident angle of ions from 50° to 70° , resulting in the high‐depth resolution of ~1.3 nm. The present results revealed that the glancing incidence of primary ions is effective to not only reducing the atomic mixing but also suppressing the difference in the etching rates between GaAs and AlAs and the preferential sputtering in the GaAs/AlAs multilayered system. The results also suggest that careful attention is required for the optimization of conditions of sputter‐depth profiling using GaAs/AlAs superlattice materials under low‐energy ion irradiation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, facilitating their use in the molecular depth profiling of these polymers by secondary ion mass spectrometry (SIMS). This study is the second in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~90 nm thick spin‐cast poly(methyl methacrylate), poly(n‐butyl methacrylate), poly(n‐octyl methacrylate) and poly(n‐dodecyl methacrylate) films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. The degradation of the poly(n‐alkyl methacrylates) were compared to determine the effect of the length of the alkyl pendant group on their degradation under SF5+ bombardment. The sputter rate and stability of the characteristic secondary ion intensities of these polymers decreased linearly with alkyl pendant group length, suggesting that lengthening the n‐alkyl pendant group resulted in increased loss of the alkyl pendant groups and intra‐ or intermolecular cross‐linking under SF5+ bombardment. These results are partially at variance with the literature on the thermal degradation of these polymers, which suggested that these polymers degrade primarily via depolymerization with minimal intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface.  相似文献   

10.
The internal energy (Eint) distributions of a series of p-substituted benzylpyridinium ions generated by both direct analysis in real time (DART) and electrospray ionization (ESI) were compared using the “survival yield” method. DART mean Eint values at gas flow rates of 2, 4, and 6 L min−1, and at set temperatures of 175, 250, and 325 °C were in the 1.92–2.21 eV range. ESI mean Eint at identical temperatures in aqueous and 50% methanol solutions ranged between 1.71 and 1.96 eV, and 1.53 and 1.63 eV, respectively. Although the results indicated that ESI is a “softer” ionization technique than DART, there was overlap between the two techniques for the particular time-of-flight mass spectrometer used. As a whole, there was an increase in Eint with increasing reactive and drying gas temperatures for DART and ESI, respectively, indicating thermal ion activation. Three dimensional computational fluid dynamic simulations in combination with direct temperature measurements within the DART ionization region revealed complex inversely coupled fluid-thermal phenomena affecting ion Eint values during atmospheric transport. Primarily, that DART gas temperature in the ionization region was appreciably less than the set gas temperature of DART due to the set gas flow rates. There was no evidence of Eint deposition pathways from metastable-stimulated desorption, but fragmentation induced by high-energy helium metastables was observed at the highest gas flow rates and temperatures.  相似文献   

11.
Polyatomic primary ions have been applied recently to the depth profiling of organic materials by secondary ion mass spectrometry (SIMS). Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, but the relationship between polymer chemistry and degradation under polyatomic primary ion bombardment has not been studied systematically. In this study, positive and negative ion time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~100 nm thick spin‐cast poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA) and poly(methacrylic acid) (PMAA), films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. These polymers were compared to determine the effect of the main chain and pendant methyl groups on their degradation under SF5+ bombardment. The sputter rate of PMMA was approximately twice that of PMA or PMAA and the rate of damage accumulation was higher for PMA and PMAA than PMMA, suggesting that the main chain and pendant methyl groups played an important role in the degradation of these polymers under SF5+ bombardment. These results are consistent with the literature on the thermal and radiation‐induced degradation of these polymers, which show that removal of the main chain or pendant methyl groups reduces the rate of depolymerization and increases the rate of intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Based on a brief review of the well‐established framework of definitions, measurement and evaluation principles of the depth resolution in sputter profiling for interfaces, delta layers, single layers and multilayers, an extension to additional definitions is presented, which include the full‐width‐at‐half‐maximum of layer profiles and non‐Gaussian depth resolution functions as defined by the Mixing‐Roughness‐Information depth (MRI) model. Improved evaluation methods for adequate analysis of sputter depth profiles as well as improved definitions of depth resolution are introduced in order to meet new developments in ToF‐SIMS and GDOES, and in cluster ion sputtering of so‐called delta layers in organic matrices. In conclusion, the full‐width‐at‐half‐maximum definition and measurement of depth resolution, Δz(FWHM), is found to be more appropriate than the traditional Δz(16–84%) in order to characterize depth profiles of single layers and multilayers, because it is also valid for non‐Gaussian depth resolution functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The results of measurements of the optical absorption spectra, IR absorption spectra, thermogravimetric analysis, and elementary analysis of pyrolyzed polyacrilonitrile are presented as a function of the pyrolysis temperature Tp and of the duration of pyrolysis. At Tp ~ 200°C, an intermediate phase was discovered, containing conjugated CN sequences and a completely unreacted carbon backbone. The optical absorption data imply that the resulting polymer is a semiconductor with a delocalized π-electron system and an energy gap Eg ? 2.5 eV. For Tp > 260°C, the weight loss rapidly increases, and the absorption edge gradually broadens and shifts to lower energies. The resulting polymer (after higher-temperature pyrolysis) contains CN and C?C? C conjugation sequences, but appears to be a complex structure consisting of a mixture of different chemical species.  相似文献   

14.
Two high molecular weight (ηinh > 1.0) soluble poly-as-triazines have been prepared by the solution polycondensation in m-cresol of 2,6-pyridinediyl dihydrazidine with p,p′-oxybis(phenyleneglyoxal hydrate) and with p,p′-oxydibenzil. Thermal characterization of the poly-as-triazines by TGA showed polymer decomposition temperatures of ~400°C after a 300°C cure in argon. Poly-as-triazines exhibited weight losses <8% after aging in static air at 316°C for 200 hr. Clear yellow films cast for m-cresol solutions exhibited good flexibility and toughness even after aging at 316°C for 200 hr in air and after refluxing in 10% aqueous potassium hydroxide solution for 24 hr.  相似文献   

15.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

16.
Single Crystals of Ba[NiF6] Transparent, rubin-red single crystals of β-BaNiF6 were grown unexpectedly by high pressure fluorination [pF2 > 3500 atm, 450–500°C, 10d; Monel autoclave]. The refinement of the structure [Four circle diffractometer PW 1100, Mo?Kα; 132 I0(hkl) 3° < θ < 30°; anisotropic factors of temperature, R = RW = 3.7%] confirmes the interpretation of powder datas due to them the BaGeF6 type of structure is present.  相似文献   

17.
Morphology of rapid thermally annealed GaP(001) surfaces has been investigated using spectroscopic ellipsometry (SE), optical microscopy, ex situ atomic force microscopy, electron probe microanalysis (EPMA) and X‐ray photoelectron spectroscopy (XPS). The samples were annealed in vacuum for t = 2 s at temperatures T = 20–900 °C. The SE, optical microscopy and XPS spectra suggest that thermal annealing causes little influence on the GaP surface at T ≤ 600 °C; however, micro‐ and macroscopic roughening occur at T > 600 °C and T ≥ 750 °C, respectively, with a generation of Ga droplets at T ≥ 750 °C. The presence of the Ga droplets is confirmed by the EPMA measurements. The droplet density can be expressed as NGa ∝ exp (Ea/kBT) with an activation energy of Ea ~ 2.3 eV. The XPS data indicate the change in the surface oxide composition from the native oxide to the Ga oxide (Ga2O3 and Ga2O) after annealing at T ≥ 750 °C. Possible annealing‐induced degradation steps are proposed to provide as complete a picture as possible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An effect of measurement conditions on the depth resolution was investigated for dual‐beam time of flight‐secondary ion mass spectrometry depth profiling of delta‐doped‐boron multi‐layers in silicon with a low‐energy sputter ion (200 eV – 2 keV O2+) and with a high‐energy primary ion (30 keV Bi+). The depth resolution was evaluated by the intensity ratio of the first peak and the subsequent valley in B+ depth profile for each measurement condition. In the case of sputtering with the low energy of 250 eV, the depth resolution was found to be affected by the damage with the high‐energy primary ion (Bi+) and was found to be correlated to the ratio of current density of sputter ion to primary ion. From the depth profiles of implanted Bi+ primary ion remaining at the analysis area, it was proposed that the influence of high‐energy primary ion to the depth resolution can be explained with a damage accumulation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Auger electron spectroscopy (AES) sputter depth profiling of an ISO reference material of the GaAs/AlAs superlattice was investigated using low‐energy Ar+ ions. Although a high depth resolution of ~1.0 nm was obtained at the GaAs/AlAs interface under 100 eV Ar+ ion irradiation, deterioration of the depth resolution was observed at the AlAs/GaAs interface. The Auger peak profile revealed that the enrichment of Al due to preferential sputtering occurred during sputter etching of the AlAs layer only under 100 eV Ar+ ion irradiation. In addition, a significant difference in the etching rates between the AlAs and GaAs layers was observed for low‐energy ion irradiation. Deterioration of the depth resolution under 100 eV Ar+ ion irradiation is attributed to the preferential sputtering and the difference in the etching rate. The present results suggest that the effects induced by the preferential sputtering and the significant difference in the etching rate should be taken into account to optimize ion etching conditions using the GaAs/AlAs reference material under low‐energy ion irradiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
SIMS depth profiling during O2 + bombardment has been performed to analyse epitaxially grown Si p-n-p layers, which define the p-channel region in vertical Si-p MOS transistors, as well as to establish “on-chip” depth profiling of the functional vertical device. The SIMS detection limit of 31P in Si, phosphorus used as n-type dopant in the transistor, has been optimised as a function of the residual gas pressure in the SIMS analysis chamber and of the sputter erosion rate. We demonstrate that good vacuum during SIMS analysis combined with high erosion rates allows the simultaneous quantitative SIMS depth profiling of n- and p-type dopant concentrations in the vertical transistor. Small area “on-chip” SIMS depth profiling through the layered structure of Al-contact/TiSi2/Si(p-n-p)/Si-substrate has been performed. Factors influencing the depth resolution during “on-chip” analysis of the transistor are discussed especially in terms of sputtering induced ripple formation at the erosion crater bottom, which has been imaged with atomic force microscopy. Received: 15 August 1996 / Revised: 17 January 1997 / Accepted: 21 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号