首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The objective of this work was to use both X‐ray and differential scanning calorimetry techniques in a comparative study of the lamellar and crystalline structures of heterogeneous and homogeneous ethylene‐α‐copolymers. The samples differed in the comonomer type (1‐butene, 1‐hexene, 1‐octene, and hexadecene), comonomer content, and catalyst used in the polymerizations. Step crystallizations were performed with differential scanning calorimetry, and the crystallinity and lamellar thicknesses of the different crystal populations were determined. Wide‐angle X‐ray scattering was used to determine crystallinities, average sizes of the crystallites, and dimensions of the orthorhombic unit cell. The average thickness, separation of the lamellae, and volume fractions of the crystalline phase were determined by small‐angle X‐ray scattering (SAXS). The results revealed that at densities below 900 kg/m3, polymers were organized as poorly organized crystal bundles. The lamellar distances were smaller and the lamellar thickness distributions were narrower for the homogeneous ethylene copolymers than for the heterogeneous ones. Step‐crystallization experiments by SAXS demonstrated that the long period increased after annealing. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1860–1875, 2001  相似文献   

2.
Field‐emission scanning electron microscopy (FESEM) was used to monitor pinecone‐like Cu(II) crystal growth on polymeric fibers for various growth times. In FESEM images, Cu(II) complexes and Cu(OH)2 crystal growth on poly(acryloamidino ethylene amine) and poly(acryloamidino diethylenediamine) were observed. Up to an elapsed time of 16 min, crystal growth was observed in only one direction. However, after an elapsed time of 20 h, pinecone‐like crystals covered the entire surfaces of the synthesized polymers. Fourier transform infrared spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy were used for analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1238–1247, 2005  相似文献   

3.
The role of TiO2 nanoparticle surfaces in affecting the crystalline structure of low‐density polyethylene (LDPE) has been investigated by varying the nanoparticle surface from hydrophilic (as‐received) to less hydrophilic (dried) or more hydrophilic (polar silane treated). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WXRD) were used to determine the degree of crystallinity and crystalline structure. The impact of nanoparticle aggregates on the nanometer to micrometer organization of LDPE crystals was studied with atomic force microscopy (AFM) and small‐angle light scattering (SALS). This characterization showed that the presence of the TiO2 nanoparticles, with the various different surface conditions investigated, did not alter the degree of LDPE crystallinity, the unit cell dimensions, the average lamellar thickness, or the average spherulite size. However, the nanoparticles did affect the internal arrangement of intraspherulitic crystalline aggregates by decreasing the relative optic axis orientation of these crystals, usually referred to as internal spherulite disorder. The LDPE filled with the nanoparticles treated with a polar silane (N‐(2‐aminoethyl) 3‐aminopropyl‐trimethoxysilane (AEAPS)) showed the highest internal spherulitic disorder and exhibited the most poorly developed spherulite structure. The combination of SALS with AFM has allowed a detailed characterization of the morphology of the semicrystalline polymer nanocomposites. Information on the internal organization of the spherulites, the size of the nanoparticle aggregates, and the location of the nanoparticle aggregates can be uniquely obtained when both techniques are used. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 488–497, 2005  相似文献   

4.
The morphology of ionic aggregates in semicrystalline Zn‐ and Na‐neutralized poly(ethylene‐ran‐methacrylic acid) (EMAA) ionomer blown films has been explored with scanning transmission electron microscopy (STEM) and small angle X‐ray scattering. The ionic aggregates of Zn‐EMAA are spherical, monodisperse, and uniformly distributed in as‐extruded pellets and blown films prepared at low and high blow‐up ratio. Thus, although the biaxial stresses of film blowing are sufficient to alter the PE superstructure, the ionic aggregates in Zn‐EMAA are unaffected. In contrast, the morphology of Na‐EMAA as detected by STEM changes from featureless in the as‐extruded pellets to a heterogeneous distribution of Na‐rich aggregates in the blown films. This transformation in Na‐EMAA morphology is consistent with our earlier study of quiescent annealing, suggesting that the morphological change is the result of thermal processing rather than the biaxial stresses of film blowing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3549–3554, 2005  相似文献   

5.
Basic structural data of two sequential poly(ester amide)s derived from glycolic acid, 1,6‐hexanediamine, and adipic acid or dodecanodioic acid have been determined by means of X‐ray and electron diffraction patterns from fibers and single crystals. Chain‐folded lamellar crystals were obtained by isothermal crystallization from diol or glycerine solutions, and the crystalline habit was investigated by real space electron microscopy. Polyethylene decoration techniques were applied to evaluate the regularity of the folding surfaces. Spherulites prepared from evaporation of formic acid solutions were also studied. The two sequential poly(ester amide)s crystallized according to triclinic and monoclinic unit cells, in which the a crystallographic parameter was close to the typical distance between hydrogen‐bonded chains. Projections viewed down the chain axis revealed differences in the packing mode since oblique and rectangular cells were found for the adipic acid and dodecanodioic acid derivatives, respectively. Both structures can be envisaged as a stacking of hydrogen‐bonded sheets although clear differences concerning the shift between consecutive sheets and the number of layers comprising the unit cell were found. The large unit cells that have been deduced seem to be a consequence of the different packing preferences of the diester and diamide moieties. Both polymers have a molecular conformation that deviates from the all‐trans conformation typical of aliphatic polyamides and polyesters with a large number of methylene groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 194–206, 2009  相似文献   

6.
Synchrotron small‐angle X‐ray scattering (SAXS) was used to study the isothermal crystallization kinetics of a family of polyanhydride copolymers consisting of 1,6‐bis(p‐carboxyphenoxy)hexane and sebacic acid monomers. In situ SAXS experiments permitted the direct observation of the crystallization kinetics. The structural parameters (the long period, lamellar thickness, and degree of crystallinity) were obtained from Lorentz‐corrected intensity profiles, one‐dimensional correlation functions, and interface distribution functions to form a comprehensive picture of the crystal morphology. The combination of these three analyses provided information not only on the lamellar dimensions but also on the polydispersity (nonuniformity) of these dimensions. Where possible, the crystallization kinetics were interpreted with a modified version of the Avrami equation. The results can be used to perform the rational design of controlled‐drug‐release formulations because crystallinity affects drug‐release kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 463–477, 2005  相似文献   

7.
Surface‐modified CdS nanoparticles selectively dispersed in hexagonally packed poly(ethylene oxide) (PEO) cylinders of poly(styrene‐b‐ethylene oxide) (PSEO) block copolymers were prepared. The photoluminescence and ultraviolet–visible characteristics of the presynthesized CdS nanoparticles in N,N‐dimethylformamide and in PEO domains of the PSEO block copolymers were determined. Because of strong interactions between the CdS nanoparticles and PEO chains, as shown by Fourier transform infrared spectroscopy, the incorporation of the CdS nanoparticles prevented the PEO cylinders from properly crystallizing; this was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. The intercylinder distance between the swollen and reduced‐crystallinity CdS/PEO cylinders in turn increased, as confirmed by small‐angle X‐ray scattering and transmission electron microscopy. At a high CdS concentration (43 wt % or 8.3 vol % with respect to PEO), however, the hexagonally packed cylindrical nanostructure of the PSEO diblock copolymers was destroyed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1220–1229, 2005  相似文献   

8.
The crystallinity of isotactic polypropylene (iPP), when deformed with plastic plane‐strain compression, was studied with wide‐angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. A comparison of the obtained crystallinity data with annealed iPP samples was performed. The material used in this study was commercial iPP (weight‐average molecular weight = 117.400 g/mol; number‐average molecular weight = 17.300 g/mol). A significant decrease in the crystallinity was observed with increasing deformation pressure when the X‐ray method was employed, whereas only a small decrease was registered when the DSC method of crystallinity determination was used. However, the annealed iPP samples demonstrated a slight crystallinity increase when evaluated by both techniques. The reason for the difference between WAXS and DSC crystallinity results is discussed. This study of iPP specimens subjected to large deformation led us to the conclusion that the WAXS method provides accurate crystallinity values for the deformed material, whereas the values obtained by the DSC method do not reproduce the real crystallinity of the deformed material. This is due to the inherent heating process of the method, which causes a relaxation process and a significant change in the crystallinity of the deformed material, providing values nearer to its intrinsic equilibrium state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 896–903, 2002  相似文献   

9.
Well‐separated and parallel aligned fibers of various polymers have been prepared by a simple but effective melt‐drawing procedure, and their structural features have been studied with field‐emission scanning electron microscopy. The results show that the resulting polymer fibers, with diameters ranging from tens of nanometers to hundreds of nanometers, consist of highly oriented lamellar or fibrillar crystals with the molecular chains aligned in the drawing direction. Scanning electron microscopy images of the drawing process indicate that drawing a thin polymer molten layer at temperature far above its melting point leads to the formation of elongated microcracks. The microcracks embedded in the polymer thin film propagate along the drawing direction and result in the formation of polymer microfibers, which split continuously under high instantaneous stresses and produce well‐separated polymer fibers with diameters on the nanometer scale. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2703–2709, 2004  相似文献   

10.
A commercial grade nylon‐6/clay nanocomposite (from Ube industries) is subjected to a large‐scale simple shear orientation process and the resulting morphology is investigated. Both the orientation and aspect ratio of nanoclays, which can be altered by the simple shear process, are studied. The incorporation of well‐dispersed nanoclays into the nylon matrix greatly reduces the nylon chain mobility as well as the percent crystallinity. Two types of lamellar orientation have been found, as revealed by small‐angle X‐ray scattering. One type of lamellae is oriented ~41° away from the clay surface, whereas the simple shear process induces another weakly preferred lamellar orientation nearly perpendicular to the clay surface. The formation of the above lamellar orientations appears to be related to both orientation of the clay in the nanocomposite and the simple shear process. The possible molecular mechanisms leading to the final morphology of the nylon‐6/clay nanocomposite is discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3555–3566, 2005  相似文献   

11.
Two series of poly(ester urethane)s were prepared, containing polycaprolactone (PCL) as the soft segment with molecular weights of 530 and 2000. In each series, the soft‐segment/hard‐segment ratio was varied, and the morphological changes were monitored with differential scanning calorimetry, dynamic mechanical thermal analysis, wide‐angle X‐ray scattering, and scanning electron microscopy techniques. The polyurethanes with longer PCL segments retained their crystallinity, whereas those with shorter PCL segments did not. A morphological model is proposed, in which a continuous PCL‐rich matrix contains both PCL crystallites and domains of urethane hard segments. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4117–4130, 2002  相似文献   

12.
Poly(4‐methyl‐1‐pentene) (PMP) membranes were modified through isothermal annealing to investigate the change of their crystalline structure and rigid and mobile amorphous fractions (RAF and MAF), assuming a three‐phase model, affected the gas transport behavior. The crystalline structure was characterized by wide‐angle X‐ray diffraction (WAXD) and small‐angle X‐ray scattering (SAXS) techniques, and the free volume properties were analyzed by positron annihilation lifetime spectroscopy. Compared with the pristine membrane, the annealed membranes show higher crystallinity; the crystals undergo partial structural change from form III to form I. The lamellar crystal thickness, rigid amorphous fraction thickness, and long period in the lamellar stacks increase with crystallinity. The annealed PMP membranes exhibit higher permeability due to the increase in larger size free volumes in MAF and higher selectivity due to the increase in smaller size free volumes in RAF, respectively. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2368–2376  相似文献   

13.
Lamellar morphology and thickness of syndiotactic polystyrene (sPS) samples melt‐crystallized at various temperatures were probed using transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). In addition, the melting temperature and enthalpy of the crystallized samples were characterized with differential scanning calorimetry. Under appropriate thermal treatments, all the samples investigated in this study were crystallized into β′ crystal modification, as revealed by wide‐angle X‐ray diffraction. From the SAXS intensity profiles, a scattering peak (or shoulder) associated with lamellar features as well as the presence of anomalous scattering at the zero‐scattering vector were evidently observed. The peculiar zero‐angle scattering was successfully described by the Debye–Bueche model, and subtraction of its contribution from the raw intensity profiles was carried out to deduce the intensity profile merely associated with the lamellar feature. The lamellar thickness obtained from Lorentz‐corrected intensity profiles in this manner agrees with that measured from the TEM images, provided that the two‐phase model is applied. On the basis of the Gibbs–Thomson equation, the modest estimations of equilibrium melting temperature and the surface free energy of the fold lamellar surface are 292.7 ± 2.7 °C and 20.2 ± 2.6 erg/cm2, respectively, when lamellar thicknesses measured by TEM are applied. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1626–1636, 2002  相似文献   

14.
A group of polymerizable amphiphiles, with their critical packing parameters systematically varied, were studied with respect to the phase behavior and immobilization of their lyotropic liquid‐crystalline phase structures. Small‐angle X‐ray scattering and polarized light microscopy were used to study their liquid‐crystalline phases before and after photopolymerization. The liquid crystallinity of the amphiphiles depended on the contents of both oil and water in the ternary systems. Through photopolymerization, hexagonal phases could generally be immobilized, with the structural order reduced to various degrees. However, the cubic phases evolved with polymerization into another structural pattern, which was possibly related to the lamellar structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5887–5897, 2006  相似文献   

15.
Structural characterization of poly(dodecamethylen‐di‐O‐methyl‐L‐tartaramide) was carried out with optical microscopy, thermal analysis, X‐ray diffraction, and electron microscopy. Two different crystalline forms were found in accordance with the thermograms, powder and fiber X‐ray diffraction diagrams. The electron microscopy allows corroboration of the morphological and crystallographic differences. Molecular modeling was used to conclude the structural analogies and differences between the two crystalline forms that were related to the chain packing and orientation in the crystal cell, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2523–2530, 2002  相似文献   

16.
Seven different fluoropolymer films were used as matrix materials for radiation‐grafted ion‐exchange membranes. The crystallinity and preferred orientation of these membranes were studied with wide‐angle X‐ray scattering, and the lamellar structure of the membranes was examined with small‐angle X‐ray scattering. The crystallinity of poly(vinylidene fluoride) (PVDF)‐based matrix materials varied between 57 and 40%, and the crystallinity of the sulfonated samples varied between 34 and 23%. The lamellar periods of PVDF‐based matrix materials were about 115 Å, and the lamellar periods of poly(ethylene‐alt‐tetrafluoroethylene) and poly(tetrafluoroethylene‐co‐hexafluoropropylene) were 250 and 212 Å, respectively. When the samples were grafted, the lamellar periods increased. Correlation function analysis showed very clearly that the long‐range order decreased because of grafting and sulfonation processes. For those samples that showed good proton conductivity, the lamellar period also increased because of sulfonation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1539–1555, 2002  相似文献   

17.
Conjugated polymers consisting of pyrrole or an N‐substituted pyrrole bridged by methine with a mesogenic group were synthesized. Chemical structures of the products were confirmed with IR, NMR, UV–visible (UV–vis) spectroscopy, and gel permeation chromatography analysis. Liquid crystallinity was examined with differential scanning calorimetry measurements and polarizing optical microscopy observations. Liquid crystal domains of the polymer were macroscopically oriented in one direction by an external magnetic force (10 Tesla). The polymer orientation was confirmed by optical microscopy and X‐ray analysis. One of the polymers exhibited a striated fan‐shaped texture when observed with a polarizing optical microscope. This is attributed to the formation of a chiral smectic C (SmC*) phase, which is a property of ferroelectricity. Spontaneous polarization of the polymer occurred at 110 nC/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 616–629, 2005  相似文献   

18.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

19.
Structural studies and morphological features of a new family of linear, aliphatic even–even, X 34‐nylons, with X = 2, 4, 6, 8, 10, and 12, are investigated with X‐ray diffraction and electron microscopy. Solution‐grown crystals were obtained by isothermal crystallization from N,N‐dimethylformamide solutions. The thickness of lamellar‐like crystals was orders of magnitude less than the chain lengths of the polymer samples used, implying that the chains fold to form chain‐folded lamellae. The results bear a close resemblance, with the noticeable exception of 2 34‐nylon, to those reported for nylon 6 6 and other even–even nylon chain‐folded lamellar crystals. The basic structure of the straight‐stem lamellar core is similar to that of the classic nylon 6 6 triclinic α structure, and the chains tilt ≈42° relative to the lamellar normal. In the case of 2 34‐nylon, the structure resembles the 2 Y nylon series, and the chain tilt angle reduces to 36.6°. These combined results suggest that, even with a relatively low frequency of amide units along the backbone of these molecules, hydrogen bonding is still the dominant element in controlling the behavior, structure, and properties of these polymers. In addition, gels were prepared in concentrated sulfuric acid, and gel‐spun fibers were studied using X‐ray diffraction. The data are interpreted in terms of a modified nylon triclinic α structure that bears a resemblance to the structure of even–even nylons at elevated temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2685–2692, 2002  相似文献   

20.
In this article we investigated the influence of various nanofilllers' aspect ratio, chemical nature, and organic modification on some selected nylon‐6 properties, such as crystallinity, thermal and mechanical resistance, and fire behavior. Materials were prepared by twin‐screw extrusion and characterized by means of scanning and transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, tensile tests, and cone calorimeter. Fillers characteristics were found to influence at different extents the material final properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1935–1948, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号