首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The living cationic polymerization of octadecyl vinyl ether (ODVE) was achieved with an 1‐(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3]/EtAlCl2 initiating system in hexane in the presence of an added weak Lewis base at 30 °C. In contrast to conventional polymers, poly(octadecyl vinyl ether) underwent upper‐critical‐solution‐temperature‐type phase separation in various solvents, such as hexane, toluene, CH2Cl2, and tetrahydrofuran, because of the crystallization of octadecyl chains. Amphiphilic block and random copolymers with crystallizable substituents of ODVE and 2‐methoxyethyl vinyl ether (MOVE) were synthesized via living cationic polymerization under similar conditions. Aqueous solutions of the copolymers yielded physical gels upon cooling because of strong interactions between ODVE units, regardless of the copolymer structure. The product gels, however, exhibited different viscoelastic properties: A 20 wt % solution of a block copolymer (400/20 MOVE/ODVE) became a soft physical gel that behaved like a typical gel, whereas the corresponding random copolymer gave a transparent but stiff gel with a certain relaxation time. Differential scanning calorimetry analysis confirmed that the crystalline–amorphous transition of the octadecyl chains was a key step for inducing such physical gelation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1155–1165, 2005  相似文献   

2.
Amphiphilic diblock copolymers were prepared by the living cationic polymerization of vinyl ethers in the presence of added bases, and their selective solvent‐induced physical gelation behavior was investigated. The block copolymerization of 2‐phenoxyethyl vinyl ether (PhOVE) and 2‐methoxyethyl vinyl ether (MOVE) was carried out in the presence of ethyl acetate with Et1.5AlCl1.5 in toluene at 0 °C. Despite the rate difference, diblock copolymers with a very narrow molecular weight distribution were obtained, quantitatively. By adding the selective solvent, water, to the acetone solution of the diblock copolymer, PhOVE200b‐MOVE400, physical gelation occurred suddenly and the system ceased to flow, maintaining transparency. Viscoelastic measurements and transmission electron microscopic observations were performed to examine the characteristic gelation behavior and structure of the obtained gels. Various gelation conditions and physical gelation by other amphiphilic block copolymers were also designed on the basis of the solubility of each block segment. Further, new forms of physical gelation, accompanied by the solubilization of immiscible organic compounds, were achieved using similar diblock copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3190–3197, 2001  相似文献   

3.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

4.
Stimuli‐responsive ABC triblock copolymers with three segments with different phase‐separation temperatures were synthesized via sequential living cationic copolymerization. The triblock copolymers exhibited sensitive thermally induced physical gelation (open association) through the formation of micelles. For example, an aqueous solution of EOVE200b‐MOVE200b‐EOEOVE200 [where EOVE is 2‐ethoxyethyl vinyl ether, MOVE is 2‐methoxethyl vinyl ether and EOEOVE is 2‐(2‐ethoxy)ethoxyethyl vinyl ether; the order of the phase‐separation temperatures was poly(EOVE) (20 °C) < poly(EOEOVE) (41 °C) < poly(MOVE) (70 °C)] underwent multiple reversible transitions from sol (<20 °C) to micellization (20–41 °C) to physical gelation (physical crosslinking, 41–64 °C) and, finally, to precipitation (>64 °C). At 41–64 °C, the physical gel became stiffer than similar diblock or ABA triblock copolymers of the same molecular weight. Furthermore, the ABC triblock copolymers exhibited Weissenberg effects in semidilute aqueous solutions. In sharp contrast, another ABC triblock copolymer with a different arrangement, EOVE200b‐EOEOVE200b‐MOVE200, scarcely exhibited any increase in viscosity above 41 °C. The temperatures of micelle formation and physical gelation corresponded to the phase‐separation temperatures of the segment types in the ABC triblock copolymer. No second‐stage association was observed for AB and ABA block copolymers with the same thermosensitive segments found in their ABC counterparts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2601–2611, 2004  相似文献   

5.
Amphiphilic block and statistical copolymers of vinyl ethers (VEs) with pendant glucose residues were synthesized by the living cationic polymerization of isobutyl VE (IBVE) and a VE carrying 1,2:5,6‐di‐O‐isopropylidene‐D ‐glucose (IpGlcVE), followed by deprotection. The block copolymer was prepared by a two‐stage sequential block copolymerization, whereas the statistical copolymer was obtained by the copolymerization of a mixture of the two monomers. The monomer reactivity ratios estimated with the statistical copolymerization were r1 (IBVE) = 1.65 and r2 (IpGlcVE) = 1.15. The obtained statistical copolymers were nearly uniform with the comonomer composition along the main chain. Both the block and statistical copolymers had narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ∼ 1.1). Gel permeation chromatography, static light scattering, and spin–lattice relaxation time measurements in a selective solvent revealed that the block copolymer formed multimolecular micelles, possibly with a hydrophobic poly(IBVE) core and a glucose‐carrying poly(VE) shell, whereas the statistical copolymer with nearly the same molecular weight and segment composition was molecularly dispersed in solution. The surface properties of the solvent‐cast films of the block and statistical copolymer were also investigated with the contact‐angle measurement. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 459–467, 2001  相似文献   

6.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

7.
A vinyl ether bearing a carbonate side group (2‐oxo‐1,3‐dioxolan‐4‐yl‐methyl vinyl ether, GCVE) was synthesized and copolymerized with various commercially available fluoroolefins [chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and perfluoromethyl vinyl ether (PMVE)] by radical copolymerization initiated by tert‐butyl peroxypivalate. Although HFP, PMVE, and vinyl ether do not homopolymerize under radical conditions, they copolymerized easily yielding alternating poly(GCVE‐alt‐F‐alkene) copolymers. These alternating structures were confirmed by elemental analysis as well as 1H, 19F, and 13C NMR spectroscopy. All copolymers were obtained in good yield (73–85%), with molecular weights ranging from 3900 to 4600 g mol?1 and polydispersities below 2.0. Their thermogravimetric analyses under air showed decomposition temperatures at 10% weight loss (Td,10%) in the 284–330°C range. The HFP‐based copolymer exhibited a better thermal stability than those based on CTFE and PMVE. The glass transition temperatures were in the 15–65°C range. These original copolymers may find potential interest as polymer electrolytes in lithium ions batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Stimuli‐responsive gradient copolymers, composed of various monomers, were synthesized by living cationic polymerization in the presence of base. The monomers included thermosensitive 2‐ethoxyethyl vinyl ether (EOVE) and 2‐methoxyethyl vinyl ether (MOVE), hydrophobic isobutyl vinyl ether (IBVE) and 2‐phenoxyethyl vinyl ether (PhOVE), crystalline octadecyl vinyl ether (ODVE), and hydrophilic 2‐hydroxyethyl vinyl ether (HOVE). The synthesis of gradient copolymers was conducted using a semibatch reaction method. Living cationic polymerization of the first monomer was initiated using a conventional syringe technique, followed by an immediate and continuous addition of a second monomer using a syringe pump at regulated feed rates. This simple method permitted precise control of the sequence distribution of gradient copolymers, even for a pair of monomers with very different relative monomer reactivities. The stimuli‐responsive gradient, block and random copolymers exhibited different self‐association behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6444–6454, 2008  相似文献   

11.
Sequential living cationic polymerization of octadecyl vinyl ether (ODVE) and methyl vinyl ether (MVE) was used for the preparation of amphiphilic ABA‐type block copolymers. The polymerization of ODVE was initiated with the trimethyl silyl iodide/1,1,3,3‐tetramethoxy propane/ZnI2 system at 0°C in toluene. The living bifunctional polyODVE thus obtained was used as initiator for the polymerization of MVE. Below the LCST of polyMVE (37°C), the copolymers are amphiphiles. Above the LCST of polyMVE, the polyMVE‐blocks become hydrophobic and the amphiphilic nature of the block copolymer is lost. This was demonstrated by using the block copolymers as emulsifiers for water/decane mixtures. The emulsions were stable for several hours at room temperature, while the emulsion stability decreased to about 30 seconds at 40°C. PolyMVE‐α,ω‐bis‐methacrylates were obtained by end‐capping of living bifunctional polyMVE with 2‐hydroxyethyl methacrylate (HEMA). Copolymerization of these bis‐macromers with HEMA leads to segmented networks. The networks showed a reversible swelling/deswelling behavior in water as a function of temperature. This is caused by a change of the hydrophilicity of the polyMVE segments in the networks. Hexa(chloromethyl)melamine, combined with zinc chloride was found to be an efficient hexafunctional initiator for the living cationic polymerization of vinyl ethers. This simple initiating system opens new ways for the synthesis of endgroup‐functionalized star‐shaped poly(vinyl ethers).  相似文献   

12.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

13.
Nonreactive bisphenol A‐based poly(arylene ether triphenyl phosphine oxide/diphenyl sulfone) statistical copolymers and a poly(arylene ether triphenyl phosphine oxide) homopolymer, each having a number‐average molecular weight of about 20 kg/mol, were synthesized and solution‐blended with a commercial dimethacrylate vinyl ester resin. Free‐radical cured systems produced morphologies that were a function of both the amount of phosphonyl groups and the weight percentage of the copolymers. For example, highly hydrogen‐bonded poly(arylene ether phenyl phosphine oxide) homopolymer/vinyl ester resin mixtures were homogeneous in all proportions both before and after the formation of networks. Copolymers containing low amounts (≤30 mol %) of the phosphonyl groups displayed phase separation either before or during cure. The phase‐separated cured materials generally had phase‐inverted morphologies, such as a continuous thermoplastic copolymer phase and a particulate, discontinuous vinyl ester network phase, except for systems containing a very low copolymer content. The resin modified with a copolymer containing 30 mol % phosphine oxide comonomer showed improved fracture toughness, suggesting the importance of both phase separation and good adhesion between the thermoplastic polymer and the crosslinked vinyl ester filler phase. The results suggested that the copolymers with high amounts of phosphine oxide should be good candidates for interphase sizing materials between a vinyl ester matrix and high‐modulus carbon fibers for advanced composite systems. Copolymers with low amounts of phosphonyl groups can produce tough, vinyl ester‐reinforced plastics. The char yield increases with the concentration of bisphenol A poly(arylene ether phosphine oxide) content, suggesting enhanced fire resistance. The incorporation of thermoplastic copolymers sustains a high glass‐transition temperature but does not significantly affect the thermal degradation onset temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2409–2421, 2000  相似文献   

14.
A well‐defined amphiphilic coil‐rod block copolymer, poly(2‐vinyl pyridine)‐b‐poly(n‐hexyl isocyanate) (P2VP‐b‐PHIC), was synthesized with quantitative yields by anionic polymerization. A low reactive one‐directional initiator, potassium diphenyl methane (DPM‐K), was very effective in polymerizing 2‐vinyl pyridine (2VP) without side reactions, leading to perfect control over molecular weight and molecular weight distribution over a broad range of initiator and monomer concentration. Copolymerization of 2VP with n‐hexyl isocyanate (HIC) was carried out in the presence of sodium tetraphenyl borate (NaBPh4) to prevent backbiting reactions during isocyanate polymerization. Terminating the living end with a suitable end‐capping agent resulted in a P2VP‐b‐PHIC coil‐rod block copolymer with controlled molecular weight and narrow molecular weight distribution. Cast film from a chloroform solution of P2VP‐b‐PHIC displayed microphase separation, characteristic of coil‐rod block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 607–615, 2005  相似文献   

15.
A series of well‐defined double hydrophilic double‐grafted copolymers, consisting of polyacrylate backbone, hydrophilic poly(2‐(diethylamino)ethyl methacrylate) and poly(ethylene glycol) side chains, were synthesized by successive atom transfer radical polymerization. The backbone, poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) comb copolymer, was firstly prepared by ATRP of PEGMEA macromonomer via the grafting‐through route followed by reacting with lithium diisopropylamide and 2‐bromopropionyl chloride to give PPEGMEA‐Br macroinitiator of ATRP. Finally, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(2‐(diethylamino)ethyl methacrylate) graft copolymers were synthesized by ATRP of 2‐(diethylamino)ethyl methacrylate using PPEGMEA‐Br macroinitiator via the grafting‐from route. Poly(2‐(diethylamino)ethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections, which is tolerant of both acidic and basic environment. The molecular weights of both backbone and side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.39). The results of fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy showed this double hydrophilic copolymer was stimuli‐responsive to both pH and salinity. It can aggregate to form reversible micelles in basic surroundings which can be conveniently dissociated with the addition of salt at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3142–3153, 2009  相似文献   

16.
A metal‐free, cationic, reversible addition–fragmentation chain‐transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×105 and narrow molecular‐weight distributions (Mw/Mn<1.1). This “living” or controlled cationic polymerization is applicable to various electron‐rich monomers including vinyl ethers, p‐methoxystyrene, and even p‐hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate.  相似文献   

17.
The radical ring‐opening copolymerization of 2‐isopropenyl‐3‐phenyloxirane (1) with styrene (St) was examined to obtain the copolymer [copoly(1‐St)] with a vinyl ether moiety in the main chain. The copolymers were obtained in moderate yields by copolymerization in various feed ratios of 1 and St over 120 °C; the number‐average molecular weights (Mn) were estimated to be 1800–4200 by gel permeation chromatography analysis. The ratio of the vinyl ether and St units of copoly(1‐St) was estimated with the 1H NMR spectra and varied from 1/7 to 1/14 according to the initial feed ratio of 1 and St. The haloalkoxylation of copoly(1‐St) with ethylene glycol in the presence of N‐chlorosuccinimide produced a new copolymer with alcohol groups and chlorine atoms in the side group in a high yield. The Mn value of the haloalkoxylated polymer was almost the same as that of the starting copoly(1‐St). The incorporated halogen was determined by elemental analysis. The analytical result indicated that over 88% of the vinyl ether groups participated in the haloalkoxylation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3729–3735, 2000  相似文献   

18.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

20.
The degenerative transfer copolymerization of vinyl acetate with ethene and higher 1‐alkenes, as well as their fluoro derivatives (RfCH?CH2), under mild conditions was carried out using AIBN as the initiator and ethyl iodoacetate as the control agent. The obtained random copolymers were fairly high in alkene content, with high molecular weights and relatively narrow polydispersities. The quasi‐living nature of the copolymerization allowed the synthesis of a block terpolymer by sequential addition of two different 1‐alkene comonomers to a vinyl acetate copolymerization system. The fluorinated side chains of vinyl acetate/fluoro alkene copolymers segregate toward the air‐side of thin films, resulting in advancing water contact angle as high as 114°. 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3728–3736, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号