首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymer of natural rubber and poly(methyl methacrylate) (NR‐g‐PMMA) was prepared using semi‐batch emulsion polymerization technique via bipolar redox initiation system. It was found that the grafted PMMA increased with the increase of methyl methacrylate (MMA) concentration used in the graft copolymerization. The NR‐g‐PMMA was later used to prepare thermoplastic vulcanizates (TPVs) by blending with PMMA through dynamic vulcanization technique. Conventional vulcanization (CV) and efficient sulphur vulcanization (EV) systems were studied. It was found that the CV system provided polymer melt with lower shear stress and viscosity at a given shear rate. This causes ease of processability of the TPVs via extrusion and injection molding processes. Furthermore, the TPVs with the CV system showed higher ultimate tensile strength and elongation. The results correspond to the morphological properties of the TPVs. That is, finer dispersion of the small vulcanized rubber particles were observed in the PMMA matrix. Various blend ratios of the NR‐g‐PMMA/PMMA blends using various types of NR‐g‐PMMA (i.e. prepared using various percentage molar ratios of NR and MMA) were later studied via dynamic vulcanization by a conventional sulphur vulcanization system. It was found that increasing the level of PMMA caused increasing trend of the tensile strength and hardness properties but decreasing level of elongation properties. Increasing level of the grafted PMMA in NR molecules showed the same trend of mechanical properties as in the case of increasing concentration of PMMA used as a blend component. From morphological studies, two phase morphologies were observed with a continuous PMMA phase and dispersed elastomeric phase. It was also found that more finely dispersed elastomeric phase was obtained with increasing the grafted PMMA in the NR molecules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Novel thermoplastic elastomers based on multi‐block copolymers of poly(l ‐lysine) (PLL), poly(N‐ε‐carbobenzyloxyl‐l ‐lysine) (PZLL), poly(ε‐caprolactone) (PCL), and poly(ethylene glycol) (PEG) were synthesized by combination of ring‐opening polymerization (ROP) and chain extension via l ‐lysine diisocyanate (LDI). SEC and 1H NMR were used to characterize the multi‐block copolymers, with number‐average molecular weights between 38,900 and 73,400 g/mol. Multi‐block copolymers were proved to be good thermoplastic elastomers with Young's modulus between 5 and 60 MPa and tensile strain up to 1300%. The PLL‐containing multi‐block copolymers were electrospun into non‐woven mats that exhibited high surface hydrophilicity and wettability. The polypeptide–polyester materials were biocompatible, bio‐based and environment‐friendly for promising wide applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3012–3018  相似文献   

3.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

4.
Novel silane endcappers and novel polyurethanes end‐capped with trimethoxysilane (silylated polyurethanes) were developed as water‐curable materials in which the curing reaction occurred under humid conditions in the presence of dioctyltin diversatate as a curing catalyst. A variety of amine‐terminated trimethoxysilane compounds were synthesized by the Michael addition reaction of commercially available 3‐aminopropyltrimethoxysilane with acrylates, and the resulting silane endcappers were used to react with isocyanate‐terminated polyurethanes, providing the silylated polyurethanes. The moisture‐curable silylated polyurethanes were used for the preparation of novel one‐component and solvent‐free adhesives. The evaluated properties were the curing speed, the tensile shear bond strength, and the adherence to some substrates. The longer alkyl chains of the silane endcappers derived from various acrylates led to a slower curing speed, lower tensile strength at break, and longer elongation at break of the silylated polyurethanes. The tensile shear bond strength of the silylated polyurethane‐based adhesive decreased with decreasing the trimethoxysilane end‐capping ratio, whereas an increase in the adherence was observed. The adherence to the acrylic substrate was improved by changes in the main‐chain structure of the polyurethane based on the composition of poly(propylene oxide) and poly(ethylene oxide). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2689–2704, 2007  相似文献   

5.
We investigated the tensile strength and modulus of ultrahigh‐strength polyethylene (UHSPE) fibers obtained by using the special two‐step‐drawing process of as‐spun fiber (ASFs) which were prepared by the so‐called gel‐spinning method. We have found that the higher the ASF's spinning speed is, the higher the attainable tensile strength σf and modulus E are. For all the fibers drawn from ASFs with various spinning speed except for 120 m/min, we have found a master curve for the inverse of σf which is plotted as a function of T1/4E?1/2, where T is the linear density of the drawn fibers, in consistent with the Griffith theory: a thicker fiber obtained with a lower spinning speed exhibits lower strength, although all the AFSs possess the same value of E. This also suggests that a thicker fiber contains more defects which would lead to the Griffith‐type crack propagation breakage. Moreover, from morphological observation of ASFs under transmission electron microscopy, the ASF obtained at a relatively low spinning speed possesses a heterogeneous cross‐sectional morphology, whereas that obtained at relatively high spinning speed possesses a relatively homogenous morphology. We propose that this morphological evidence may account for the experimental findings of the behavior of the mechanical properties described above. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2639–2652, 2005  相似文献   

6.
In this work, various polydimethylsiloxanes (PDMS) are incorporated with isophorone diisocyanate (IPDI), 2,2‐bis(hydroxymethyl)propionic acid (DMPA), and poly(tetramethylene oxide) (PTMO) by the prepolymer process to synthesize a series of siloxane‐modified polyurethane dispersions (PUDs) with 35 wt % solid content, viscosities of 20–100 cps, and particle sizes of 40–130 nm. Hydrophobic PDMS was introduced into the PU chain either based on random distribution or through the block segment arrangement. We also establish the composition‐property relationship of PDMS‐PUD, which includes PDMS's type and molecular weight and PDMS‐PUD film's contact angle and mechanical property. The tensile strength of PDMS‐PUD film is decreased with increasing amount of PDMS. Scanning electron microscopy for chemical element analysis indicated that PDMS migrated to the surface much more easily in the block arrangement than in the random distribution. Also, some PDMS‐PUD films show a peau‐like surface, so their PUDs are considered promising to be used in processes for textiles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3482–3490, 2005  相似文献   

7.
Multiwalled carbon nanotubes (MWNTs) were functionalized by a free‐radical reaction of vinyltriethoxysilane and were blended with poly(urea urethane) (PUU) containing poly(dimethylsiloxane) as a soft segment. PUU was end‐capped with aminopropyltriethoxysilane (A‐silane) or phenyltriethoxysilane (P‐silane).A‐silane‐end‐capped PUU was covalently bonded to functionalized MWNTs, whereas P‐silane‐end‐capped PUU was noncovalently bonded to pristine MWNTs by a π–π interaction. Fourier transform infrared, Raman spectra, and thermogravimetric analysis confirmed the functionalization of MWNTs. The results showed that the optimal reaction time of the functionalization of MWNT was 8 h, and the organic content of the modified carbon nanotubes reached 35.22%. Solid‐state nuclear magnetic resonance and dynamic mechanical analysis were used to investigate the molecular structure and molecular mobility of the carbon‐nanotube/PUU nanocomposites. A‐silane PUU covalently bonded to MWNTs showed a considerable reduction in the molecular motion of the soft segment, which led to the glass‐transition temperature decreasing from ?117 to ?127 °C as MWNTs were incorporated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6084–6094, 2005  相似文献   

8.
A series of poly(ether imide)s (PEIs), III a–k , with light color and good physical properties were prepared from 1,4‐bis(3,4‐dicarboxypheoxy)‐2,5‐di‐tert‐butylbenzene dianhydride ( I ) with various aromatic diamines ( II a–k ) via a conventional two‐stage procedure that included a ring‐opening polyaddition to yield poly(amic acid)s (PAA), followed by thermal imidization to the PEI. The intermediate PAA had inherent viscosities in the range of 1.00–1.53 dL g?1. Most of the PEIs showed excellent solubility in chlorinated solvents such as dichloromethane, chloroform, and m‐cresol, but did not easily dissolve in dimethyl sulfoxide and amide‐type polar solvents. The III series had tensile strengths of 96–116 MPa, an elongation at break of 7–8%, and initial moduli of 2.0–2.5 GPa. The glass‐transition temperatures (Tg) and softening temperatures (Ts's) of the III series were recorded between 232 and 285 °C and 216–279 °C, respectively. The decomposition temperatures for 10% weight loss all occurred above 511 °C in nitrogen and 487 °C in air. The III series showed low dielectric constants (2.71–3.54 at 1 MHz), low moisture absorption (0.18–0.66 wt %), and was light‐colored with a cutoff wavelength below 380 nm and a low yellow index (b*) values of 7.3–14.8. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1270–1284, 2005  相似文献   

9.
A high‐tension annealing (HTA) method has been applied to zone‐annealed poly(ethylene‐2,6‐naphthalate) (PEN) fibers in order to further improve their mechanical properties. The HTA treatment was carried out under an applied tension of 428 MPa at a treating temperature of 175 °C. The applied tension was close to the tensile strength at 175 °C. The resulting HTA fiber had a birefringence of 0.492 and degree of crystallinity of 57%. Wide‐angle X‐ray diffraction (WAXD) photographs of the HTA fibers showed three reflections (010, 100, and 1 10) attributed to an α form crystal, but no (020) reflection attributed to a β form was observed in the equator. The tensile modulus and tensile strength increased with processing, and the HTA fiber had a maximum modulus of 33 GPa, a tensile strength of 1.1 GPa, and a storage modulus of 33 GPa at 25 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 61–67, 2000  相似文献   

10.
The effects of incorporating metal‐binding ligands as chain extenders in polyurethane elastomers were investigated. Segmented polyurethanes based on 2 kDa poly(tetramethylene oxide) (PTMO) and 4,4‐methylenebis(cyclohexyl isocyanate) were polymerized using a two‐step process in which 2,6‐bis(1‐ethyl‐5‐(methoxymethyl)‐1H‐benzo[d]imidazol‐2‐yl)pyridine was added as a chain extender. The resulting polyurethanes were then metallated using stoichiometric amounts of Zn(II) metal salts with different counterions. The resulting metallopolymers have substantially improved Young's moduli, increased failure stress, and improved thermomechanical behavior. The materials were microphase‐separated into anisotropic hard domains within a PTMO matrix. Simultaneous small‐angle X‐ray scattering and tensile testing revealed the minority hard segment domains remain relatively intact during elongation, likely due to the strength of the metal–ligand complex. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1744–1757  相似文献   

11.
Poly(L ‐lactide) (PLLA)/poly(butylene succinate‐co‐butylene adipate) (PBSA) blends were compounded with Cloisite 25A® (C25A) and C25A functionalized with epoxy groups, respectively. Epoxy groups on the surface of C25A were introduced by treating C25A with (glycidoxypropyl)trimethoxy silane (GPS) to produce so called Twice Functionalized Organoclay (TFC). Variation of morphology and properties of PLLA/PBSA/C25A composites was investigated before and after the treatment with GPS. The morphological structure of the composites was analyzed by using X‐ray diffractometry (XRD) and transmission electron microscopy (TEM). The silicate layers of PLLA/PBSA/TFC were exfoliated to a larger extent than PLLA/PBSA/C25A. Incorporation of the epoxy groups on C25A improved significantly elongation at break as well as tensile modulus and tensile strength of PLLA/PBSA/C25A. The larger amount of exfoliation of the silicate layers in PLLA/PBSA/TFC as compared with that in PLLA/PBSA/C25A was attributed to the increased interfacial interaction between the polyesters and the clay due to chemical reaction. Thermo gravimetric analysis revealed that both T5%, which was the temperature corresponding to 5% weight loss, and activation energy of thermal decomposition of PLLA/PBSA/TFC were far superior to those of PLLA/PBSA/C25A as well as to those of PLLA/PBSA, indicating that the composites with exfoliated silicate layers were more thermally stable than those with intercalated silicate layers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 478–487, 2005  相似文献   

12.
The tensile and stress‐relaxation properties of an uncrosslinked and a loosely silane‐crosslinked high‐density polyethylene exposed to organic “crude‐oil” penetrants were assessed. The measurements were performed on penetrant‐saturated samples, surrounded by the organic liquid throughout the experiment. The penetrant solubilities in the two polymers were similar and in accordance with predicted values based on the solubility parameter method. The stiffness and strength of the swollen samples were significantly less than those of the dry samples, indicating a plasticization of the amorphous component. Raman spectroscopy on polyethylene exposed to deuterated n‐hexane revealed a penetrant‐induced partial melting/dissolution of the crystal surface and an intact crystal core component. The stress‐relaxation rates, within the time frame of the experiment (~1 s to 18 h), were approximately the same, independent of silane‐crosslinks and the presence of penetrants. This indicated that the mechanical α‐relaxation, which is the main relaxation process occurring in the measured time interval, was not affected by the penetrants. Consequently, its rate seemed to be independent of the crystal surface dissolution (decrease in the content of crystal‐core interface). The shape of the “log stress–log time” curves of the swollen samples was, however, different from that of the dry samples. This was most likely attributed to a time‐dependent saturation of penetrant to a higher level associated with the stretched state of the polymer sample. The silane crosslinks affected only the elongation at break, which was less than that of the uncrosslinked material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 641–648, 2006  相似文献   

13.
The strain recovery of three syndiotactic polypropylenes (s‐PPs) differing in the percentage of [rrrr] pentad is investigated. A suitable method based on loading–unloading tests at constant displacement rate in tensile loading conditions is adopted to measure the residual and recovered strain components of the applied strain. The method allows to obtain a large amount of data from few tests and to explore a wide strain range. The dependence of the material's strain recovery on the applied strain is analyzed in relation to s‐PP strain‐induced microstructural changes and crystalline form transitions, which are reported in literature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1276–1282  相似文献   

14.
Liquid‐crystalline epoxy resins were synthesized from 6‐hydroxy‐2‐naphthoic acid, which was used as a mesogenic component, with phenylhydroquinone or isosorbide and via a further reaction with (6‐bromo‐1‐hexyl)glycidylether, which was used as a flexible spacer. In this way, phenylhydroquinone‐bis‐6‐[6‐(glycidyloxy)hexyloxy]2‐naphthoate (Gly A) and isosorbide‐bis‐6‐[6‐(glycidyloxy)hexyloxy]2‐naphthoate (Gly B) were obtained. Nematic elastomers were obtained by the crosslinking of Gly A with 2,4‐diaminotoluene (DAT) and 1,10‐decanedicarboxylic acid (SA). The liquid‐crystalline behavior was investigated with differential scanning calorimetry, polarizing light microscopy, and X‐ray diffractometry. Cholesteric mesophases were produced by the blending of different ratios of Gly A and Gly B, and these blends were then crosslinked with SA to produce nematic mesophases. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2847–2858, 2001  相似文献   

15.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

16.
Selective graft modifications of polypropylene (PP) are demonstrated in which desirable functionality is introduced without the degradation that accompanies conventional radical‐mediated processes. A range of modification strategies is presented, each exploiting triallyl trimellitate (TATM) or its derivatives to counteract the effects of macroradical fragmentation on the molecular weight. Model compound studies, as well as examinations of atactic PP reaction products, show that allylic ester activation occurs predominately by a radical‐addition/hydrogen‐transfer sequence, with a limited propensity for telomerization. The cografting of TATM and maleic anhydride leads to maleated PP of a high melt viscosity, whereas the apparent incompatibility of TATM with vinyltrimethoxysilane requires the use of TATM‐assisted thiol–ene addition and/or diallyl silane grafting to produce moisture‐curable PP derivatives. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4882–4893, 2005  相似文献   

17.
Hydroxyl‐terminated poly(butadiene) (HTPB; Mn = 2100 g mol−1) was capped with 30 and 60 wt % of ɛ‐caprolactone to reach amphiphilic triblock copolymers in form of capped poly(butadiene) CPB. The former (CPB30; Mn = 3300 g/mol) is amorphous with a glass temperature of −56 °C. CPB60 (Mn = 4000 g mol−1) is semi‐crystalline with a melting point of 50 °C and a glass transition at −47 °C. The CPBs, HTPB and polycaprolactone diol (Mn = 2000 g mol−1) were used as soft segment components in the preparation of polyurethane elastomers (PUE), using a 1/1 mixture of an MDI prepolymer and uretonimine modified MDI, and hard phase components in form of 1,3‐propane diol, 1,4‐butane diol, and 1,5‐pentane diol. CPB‐based elastomers with 1,4 butane diol (8 wt %) show hard domains as fringed aggregates with a better connection to the continuous phase than the HTPB‐based PUE. The soft segment glass transition temperature (Tg) is at −28 °C for HTPB‐based PUE and at −43 °C for those of CPB. The tensile strength of the CPB30&60‐based PUE is found between 20 and 30 MPa at an elongation at break of 400% and 550%, respectively. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1162–1172  相似文献   

18.
A series of new side‐chain cholesteric elastomers derived from cholesteryl 4‐(10‐undecylen‐1‐yloxy)‐4′‐ethoxybenzoate and phenyl 4,4′‐bis(10‐undecylen‐1‐yloxybenzoyloxy‐p‐ethoxybenzoate) was synthesized. The chemical structures of the monomers were confirmed by elemental analyses, Fourier transform infrared, and 1H NMR and 13C NMR spectra. The mesomorphic properties of elastomers were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the content of the crosslinking unit on the phase behavior of the elastomers was examined. Monomer M1 showed a cholesteric phase, and M2 displayed smectic and nematic phases. The elastomers containing <15 mol % of the crosslinking units revealed reversible mesomorphic phase transition, wide mesophase temperature ranges, and high thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3315–3323, 2005  相似文献   

19.
To clarify the relationship between a molecular deformation mechanism and a high Young's modulus of poly‐p‐phenylenebenzobisoxazole (PBO), Raman spectra were measured for fibers subjected to a tensile stress along the chain axis. The stress‐induced frequency shift of the observed Raman bands could be reproduced reasonably by the normal‐mode calculation under a quasi‐harmonic approximation. The frequency position at zero stress and the shift factor of Raman bands were predicted for a PBO chain that agreed with the actually evaluated values. On the basis of these analyses, the molecular deformation mechanism of the PBO chain has been discussed in detail. The crystalline modulus of the PBO chain was calculated theoretically to be 458 GPa, in good agreement with the X‐ray observed value of 460 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1269–1280, 2002  相似文献   

20.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号