首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of high‐spin clusters containing Li, H, and Be in which the valence shell molecular orbitals (MOs) are occupied by a single electron has been characterized using ab initio and density functional theory (DFT) calculations. A first type (5Li2, n+1LiHn+ (n = 2–5), 8Li2H) possesses only one electron pair in the lowest MO, with bond energies of ~3 kcal/mol. In a second type, all the MOs are singly occupied, which results in highly excited species that nevertheless constitute a marked minimum on their potential energy surface (PES). Thus, it is possible to design a larger panel of structures (8LiBe, 7Li2, 8Li, 4LiH+, 6BeH, n+3LiH (n = 3, 4), n+2LiH (n = 4–6), 8Li2H, 9Li2H, 22Li3Be3 and 22Li6H), single‐electron equivalent to doublet “classical” molecules ranging from CO to C6H6. The geometrical structure is studied in relation to the valence shell single‐electron repulsion (VSEPR) theory and the electron localization function (ELF) is analyzed, revealing a striking similarity with the corresponding structure having paired electrons. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
A density functional theory investigation on the geometrical and electronic properties of B4S (B2(BS)) and B5S (B(BS)) clusters has been performed in this work. Both the doublet B2(BS) ([S?B? BB? B?S]?) (D∞h, 2Πu) and the singlet B2(BS) ([S?B? B?B? B?S]2?) (D∞h, 1Σ) proved to have perfect linear ground‐state structures containing a multiply bonded BB core (BB or B?B) terminated with two BS groups, while Td B(BS) turned out to possess a perfect B? tetrahedral center directly corrected to four BS groups, similar to the corresponding boron hydride molecules of D∞h B2H, D∞h B2H, and Td BH, respectively. B4S2 and B5S4 neutrals, however, appeared to be much different: they favor a planar fan‐shaped C2v B4S2 (a di‐S‐bridged B4 rhombus) and a planar kite‐like C2v B5S4 (a di‐S‐bridged B3 triangle bonded to two BS groups), respectively. One‐electron detachment energies and symmetrical stretching vibrational frequencies are calculated for D∞h B2(BS) and Td B(BS) monoanions to facilitate their future characterizations. Neutral salts of B2(BS)2Li2 with an elusive B?B triple bond and B(BS)4Li containing a tetrahedral B? center are predicted possible to be targeted in experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

3.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

4.
The adsorption of CO2, and its derivatives, H2CO3, HCO, and CO, on Cu2O (111) surface has been investigated by first‐principles calculations based on the density functional theory at B3LYP hybrid functional level. The Cu2O (111) surface has been modeled using an embedded cluster method,in which the quantum clusters plus some ab initio ion model potentials were inserted in an array of point charges. On the surface, H2CO3 was dissociated into an H+ and an HCO ion. Among the CO2 species, HCO was the only activated species on the surface. The results suggest that the reduction of CO2 on Cu2O (111) surface can start from the form of HCO. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
We show that, in the high‐density limit, restricted Møller‐Plesset (RMP) perturbation theory yields E = π?2(1 ? ln 2) ln rs + O(r) for the correlation energy per electron in the uniform electron gas, where rs is the Seitz radius. This contradicts an earlier derivation which yielded E = O(ln|ln rs|). The reason for the discrepancy is explained. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

6.
n1,3S (n = 1 ? 4) states for atomic three‐body systems are studied with the Angular Correlated Configuration Interaction method. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) involve only linear parameters; (iii) show a fast convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the method is illustrated by the study a variety of three‐body atomic systems [m m m] with two negatively charged light particles, with diverse masses m and m, and a heavy positively charged nucleus m. The calculated ground 11S and excited n1,3S (n = 2 ? 4) state energies are compared with those given in the literature, when available. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
A simplified analysis is presented for the evaluation of the three‐electron one‐center integrals of the form ∫rrrrrred r 1d r 2d r 3, for the cases i, j, k, ≥−2, l=−2, m≥−1, n≥−1. These integrals arise in the calculation of lower bounds for energy levels and certain relativistic corrections to the energy when Hylleraas‐type basis sets are employed. Convergence accelerator techniques are employed to obtain a reasonable number of digits of precision, without excessive CPU requirements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 93–99, 1999  相似文献   

8.
A new, practical implementation of double‐group symmetry to relativistic Gaussian spinors is presented for four‐component relativistic molecular calculations. We show that the systematic adaptability to irreducible representations under arbitrary point‐group symmetry, as well as Kramers (time‐reversal) symmetry, is inherent in the present basis spinors, which possess the analytic structure of Dirac atomic spinors. The implementation of double‐group symmetry entails significant computational efficiencies in the relativistic second‐order Møller–Plesset perturbation calculation on Au2 and the density functional theory (DFT) calculation with the B3LYP functional on octahedral UF6, in which the highest symmetries used are, respectively, C and D. The four‐component B3LYP equilibrium geometry of UF6 is reported. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
Understanding the maximum bonding ability is very important with the potential both to design new compounds and to broaden chemists' imagination. While the coordination ability of the late transition metals has been richly understood, that of scandium is very poor. In this work, a detailed computational study on the equilibrium geometries, stability and vibrational frequencies of a series of Sc(CO)n (n = 1–7), Sc(CO) and Sc(CO) is reported using density functional theory functionals and the coupled cluster (single‐point) method with 6‐311+G(3df) basis set. It was shown that the obtained sequential and average CO binding energies of Sc(CO)n (n = 4–7), Sc(CO) and Sc(CO) are comparable to those of the experimentally known species, i.e., smaller Sc‐carbonyls (n ≤3) and the analog Ti(CO)7+. Thus, the studied high scandium carbonyls could all be experimentally accessible. In addition, the studied Sc(CO)n generally favor the low‐spin ground state (doublet) structures except ScCO and Sc(CO)3 that are in the quartet states. The previously uncertain spectrum bands were assigned to Sc(CO)4 and Sc(CO)5 in this work. In all, the appreciable stability suggested that the last 18‐electron first‐row transition metal carbonyls, that is, Sc(CO) and Sc(CO), could be accessible in experiment. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The structural features of vibrational excitation cross‐sections in resonant e‐H2 scattering have been investigated using a time dependent wave packet approach and a local complex potential to describe the 2Σ H anion. An analysis of the partial contributions to the vibrational excitation cross‐sections reveals that all features of the excitation profile result from simple interference between bound vibrational levels of H2 and H. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

11.
The time‐dependent‐wave‐packet method is applied to study the ionization of Br2 molecule with four ionization processes. The ground state absorption makes the photoelectron to be left in the three final ionic states: Br (X2∑), Br (A2u), and Br (B2∑), and each population of these ionic states is related with the laser intensities. The information of the dissociation can be got by analyzing the photoelectron features of the transient wave packet, which also suggests that an ionization process occurs during the dissociation, and the Br atoms that mainly resulted from the dissociation of Br2 (C1u) are ionized at later time delays as the dissociation is nearly complete. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
The structures and relative stability of the maximum‐spin n+1Aun and nAu (n = 2–8) clusters have been determined by density‐functional theory. The structure optimizations and vibrational frequency analysis are performed with the gradient‐corrections of Perdew along with his 1981 local correlation functional, combined with SBKJC effective core potential, augmented in the valence basis set by a set of f functions. We predicted the existence of a number of previously unknown isomers. The energetic and electronic properties of the small high‐spin gold clusters are strongly dependent on sizes. The high‐spin clusters tend to holding three‐dimensional geometry rather than planar form preferred in low‐spin situations. In whole high‐spin Aun (n = 2–8) neutral and cationic species, 5Au4, 2Au, and 4Au are predicted to be of high stability, which can be explained by valence bond theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
The potential energy curves (PECs) of three low‐lying electronic states of P ion, X2Πu, A2Σ, and B2Σ, have been studied using the full valence complete active space self‐consistent field method followed by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach and MRCI with Davidson correction (+Q). The correlation‐consistent basis sets, aug‐cc‐pV5Z and aug‐cc‐pV6Z, are used and the total energies are extrapolated to the complete basis set limit. Using these PECs obtained with the MRCI+Q/56‐extrapolation, the spectroscopic parameters for these electronic states are determined and compared in detail with experimental data and those of previous studies reported in the literature. The comparison shows that excellent agreement exists between the present results and the available experiments. The first 40 vibrational states for the three electronic states are also computed when the rotational quantum number J equals zero. For each vibrational state, the vibrational level G(υ), inertial rotation constant Bυ, and centrifugal distortion constant Dυ are determined when J = 0, which are in good accord with the available measurements. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
The electrophilic additions of hydroperoxyl (HO 2 ), alkylperoxyl (RO 2 ), and halogenated alkylperoxyl radicals to ethylene were studied using the AM1 and PM3 semiempirical MO methods at the SCF/UHF level. Reactantlike transition states were predicted for the title additions. The AM1 activation enthalpies (ΔH f * ) were found to be increased in the order HO 2 <CH3O 2 <C2H5O 2 <i‐C3H7O 2 . The reactivity of an alkylperoxyl radical toward ethylene was found to be increased as the degree of halogen substitution on the alkyl group increased. A good correlation was established between ΔH f * and the Taft polar substituent constants, σ*. The Evans–Polanyi correlation between ΔH f * and ΔH r ° was justified and the validity of the Hammond postulate was indicated. The calculated results were compared with the available experimental findings. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 273–283, 1999  相似文献   

16.
The gas‐phase nucleophilic substitution reactions at saturated oxygen X? + CH3OY (X, Y = Cl, Br, I) have been investigated at the level of CCSD(T)/6‐311+G(2df,p)//B3LYP/6‐311+G(2df,p). The calculated results indicate that X? preferably attacks oxygen atom of CH3OY via a SN2 pathway. The central barriers and overall barriers are respectively in good agreement with both the predictions of Marcus equation and its modification, respectively. Central barrier heights (ΔH and ΔH) correlate well with the charges (Q) of the leaving groups (Y), Wiberg bond orders (BO) and the elongation of the bonds (O? Y and O? X) in the transition structures. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
An ab initio theoretical investigation on the geometrical and electronic structures and photoelectron spectroscopies (PES) of BAun?/0 (n = 1–4) auroboranes has been performed in this work. Density functional theory and coupled cluster method (CCSD(T)) calculations indicate that BAu (n = 1–4) clusters with n‐Au terminals possess similar geometrical structures and bonding patterns with the corresponding boron hydrides BH. The PES spectra of BAu (n = 1–4) anions have been simulated computationally to facilitate their future experimental characterizations. In this series, the Td BAu anion appears to be unique and particularly interesting: it possesses a perfect tetrahedral geometry and has the highest vertical electron detachment energy (VDE = 3.69 eV), largest HOMO‐LUMO gap (ΔEgap = 3.0 eV), and the highest first excitation energy (Eex = 2.18 eV). The possibility to use the tetrahedral BAu unit as the building block of Li+[BAu4]? ion‐pair and other [BAu4]?‐containing inorganic solids is discussed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
We investigated various isomers of B6, B, and B clusters with ab initio [Hartree–Fock (HF), MP2)] and density functional theory (DFT) methods. Ten B6 isomers, 6 B isomers, and 6 B isomers are determined to be local minima on their potential energy hypersurfaces by the HF, B3LYP, B3PW91, and MP2 methods. Fourteen of these structures are first reported. The most stable neutral B6 cluster is the capped pentagonal pyramid (C5v), in agreement with the results reported previously. Hexagon B (C2h) isomer and fan‐shaped B (C2v) isomer are found to be the most stable on the cationic and anionic energy hypersurfaces, respectively. Natural bond orbital analysis suggests that there are three‐centered bonds in the most stable B6 neutral and ionic clusters. The multicentered bonds are responsible for the special stability of the lowest‐energy isomer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 269–278, 2003  相似文献   

19.
The field‐assisted dissociative ionization of CH2I irradiated by a 60‐fs 800‐nm laser with different laser intensities (1–4 × 1014 W/cm2) is studied both experimentally and theoretically. The different fragmentation patterns are observed in the experiment with a time‐of‐flight mass spectrometer. In the theoretical aspect, the Gaussian 03 program is applied to calculate the potential energies of CH2I as functions of the C? I and C? H bond distances and I? C? I bond angle under external field with different intensities. The calculations explain our experimental observations well. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

20.
MS-Xα and SCCEH calculations on the Ag2+ complexes AgF and AgCl (displaying an elongated D4h symmetry) have been carried out for a better understanding of their experimental optical and EPR properties. As salient features, the present work supports that the unpaired electron in AgCl spends a little more time on ligands than on Ag2+, in agreement with the previous analysis of EPR and optical data for KCl:Ag2+. Furthermore, the five experimental optical transitions observed in that case are reasonably assigned. The first transition (observed at 12,500 cm?1) is assigned to a jump involving the 5a1g orbital built mainly (∽70%) from 3p orbitals of axial ligands, a fact that reflects the distinct level scheme for AgCl when compared to that for more ionic complexes. Calculations on AgF and AgF performed as a function of the equatorial Ag2+ –F? distance led to a reasonable understanding of experimental gyromagnetic and superhyperfine tensors displayed by Ag2+ in fluorides. The different relative decrease undergone by g‖– go (8%) and g ? – go (28%) on passing from CsCdF3:Ag2+ to RbCdF3:Ag2+ is shown to be consistent with the formation of AgF and AgF complexes, respectively, related to the different substitutional position of Ag2+ in such lattices. The decrement of about 8.5% experienced by both g‖ – go and g? – go values on going from CsCdF3:Ag2+ to NaF:Ag2+ is pointed out to reflect the different electrostatic potential (exerted by the rest of the lattice upon the complex) seen by AgF embedded in NaCl or perovskite-type lattices. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号