首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel amphiphilic hyperbranched‐upon‐dendritic polymers with a dendritic polyester core, a linear poly(ε‐caprolactone) (PCL) inner shell, and a hyperbranched polyglycerol outer shell have been prepared. The structures of the hyperbranched‐upon‐dendritic polymers were characterized by using NMR spectra. The critical aggregating concentrations (CACs) of those amphiphilic hyperbranched‐upon‐dendritic polymers were measured by using pyrene as the polarity probe. To study the encapsulation performances of those hyperbranched‐upon‐dendritic polymers as unimolecular hosts, inter‐molecular encapsulation was carefully prevented by controlling the host concentrations below their CACs and by washing with good organic solvents. The study on encapsulation of two model guest molecules, pyrene and indomethacin, was performed. The amounts of encapsulated molecules were dependent mainly on the size of inner linear shells. About three pyrene molecules or five indomethacin molecules were encapsulated in hyperbranched‐upon‐dendritic polymers with average PCL repeating units of two but different hyperbranched polyglycerol outer shells, whereas about five pyrene molecules or about 12 indomethacin molecules were encapsulated in those with PCL repeating units of nine. The encapsulated molecules could be released in a controlled manner. Thus, the hyperbranched‐upon‐dendritic polymers could be used as unimolecular nanocarriers with controllable molecular encapsulation dosage for controlled release. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4013–4019, 2010  相似文献   

2.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   

3.
JIN Xin  TANG  Li-Ming YOU  Hu 《结构化学》2010,29(7):1115-1121
<正>Three secondary amine terminated hyperbranched poly(ester-amine)s(defined as HPEA1,HPEA2 and HPEA3)were synthesized from piperazine(A_2)and trimethylolpropane triacrylate(TMPTA,B_3)at their molar ratios of 2.5:1,2.25:1 and 2.0:1,respectively.The polymers were analyzed by ~1H NMR,GPC,DSC and TGA.The results indicated that the ratio of secondary amine to tertiary amine and the content of secondary amine decreased,while the molecular weight, molecular weight distribution and glass transition temperature(T_g)increased from HPEA1 to HPEA3.Due to their reactive terminal groups and flexible chains,these polymers further reacted with an epoxy resin(E51)to form cured films under ambient conditions.With increasing the ratio between secondary amine groups and epoxy groups from 1:2 to 2:1,the gel content,film hardness and onset decomposing temperature of the cured samples increased.The good film performances should make the polymers as the components of non-solvent coating materials.  相似文献   

4.
两亲性超支化聚(酯-胺)在染料相转移中的应用   总被引:8,自引:1,他引:7  
具有树枝状结构的大分子由于其独特的结构、大量的分子内空穴、可修饰的表面端基及良好的溶解性,已被用作主体分子与客体分子进行复合,并在药物释放、纤维染色、印刷、传感器等方面显示良好的应用前景。通过长烷基链或氟碳链改性的两亲性树枝状分子可以将水溶性酸性染料  相似文献   

5.
Two bola‐amphiphilic small molecules, based on the diphenylanthracene skeleton structure, namely, BASM‐1 and its functionalized small molecule BASM‐2 , were designed and synthesized. The self‐assembly behavior and mechanism of these two molecules in aqueous solution were studied. The supramolecular two‐dimensional (2D) layer and the covalent 2D polymers were, respectively, prepared by these two molecules. What is more, the transverse size of the covalent 2D polymer laminates increased with the extension of the polymerization time. Atomic force microscopy results showed that both free‐standing single‐layer 2D polymers and few layer laminates with two to three molecular layers were obtained. So our work provides a simple and efficient method for directly preparing independent both supramolecular 2D polymers and covalent 2D polymers in liquid phase which is of great significance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1748–1755  相似文献   

6.
Poly(acrylic acid) (PAA) was derivatized through the reaction of its pendant carboxylic acid (CO2H) groups with a wide range of amine‐terminated molecules. These molecules contained alkyl, hydroxyl, sulfonic acid, or perfluoroalkyl groups. N‐substitution of PAA was carried out by the simple addition of 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholinium chloride (DMTMM), a triazine‐based condensing reagent, to a mixture of PAA and amine‐terminated molecules. From proton nuclear magnetic resonance and infrared spectroscopy, it was confirmed that these functional molecules were introduced into the PAA side chain via amide bonds. By the alteration of the synthetic conditions, functional side‐chain contents of greater than 95% were achieved for aqueous reactions with taurine, ethanol amine, and butyl amine. Side‐chain conversion was limited to ≤80% for reactions with perfluoroalkyl amines in methanol. Thus, DMTMM is an attractive replacement for carbodiimide condensing reagents such as 1,3‐dicyclohexylcarbodiimide and 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 126–136, 2006  相似文献   

7.
A series of well‐defined amphiphilic comb poly (ether amine)s (acPEAs) were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial available poly(propylene glycol) (PPO) diglycidyl ether and Jeffamine L100, followed by esterification of hydroxyl groups in backbone by alkyl carboxylic acid with different chain length. acPEAs are comprised of hydrophilic short PEO chains and hydrophobic alkyl chains as comb chains, which are grafted on PPO backbone alternately to form well‐defined structure. With the very low critical micelle concentration (CMC) of around 3.0 × 10?3 g/L, the obtained acPEAs can self‐assemble into stable nanomicelles, whose aggregation is responsive to temperature, pH, and ionic strength with tunable cloud point (CP). The CP of acPEAs' aqueous solution increases with the decrease of the length of graft alkyl chains, the decrease of pH value, and the decrease of ionic strength. A transition behavior in the responsive aggregation of micelles formed by acPEA8 and acPEA10 in aqueous solution, especially at low pH value (<7.0), was observed, which was also revealed by DLS results. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3468–3475, 2010  相似文献   

8.
Hyperbranched polyesters (HPs) with a variable content of benzoyl terminal groups were synthesized through the chemical modification of the HPs' cores by substituting a controlled fraction of the terminal hydroxyl groups with benzoyl chloride. The resulting hyperbranched polymers that were modified by benzoyl groups (HPs‐B) were characterized by 1H NMR, FTIR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). Research results revealed that self‐assembled structures could be formed in selected solvents (acetone/n‐hexane). It was found that the morphologies of self‐assembled structures could be adjusted by controlling the content of outside benzoyl terminal groups in the hyperbranched polymers, the volume ratio of acetone with n‐hexane, and the concentration of the hyperbranched polymers with benzoyl terminal arms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5554–5561, 2005  相似文献   

9.
Thermoregulated phase‐transfer catalysis for the transfer hydrogenation of 2‐octanone in 2‐propanol/H2O biphasic media was achieved with ruthenium‐bearing microgel‐core star polymers with amphiphilic, thermosensitive poly(ethylene glycol) (PEG) arms [Ru(II)‐PEG star], which were directly prepared by the ruthenium‐catalyzed living radical polymerization in conjunction with a phosphine ligand‐carrying styrene derivative. The star polymers were first placed in the aqueous (lower) layer at room temperature and immediately moved into the organic (upper) layer at 100 °C, and once again, moved down to the aqueous layer (lower) upon cooling the solution to room temperature. The Ru(II)‐PEG star catalyst was clearly superior to the original Ru(II) catalyst and related non‐microgel catalysts [Ru(II)‐PEG block] in terms of activity and recovery/recycle, due to the unique designer structure of the microgel‐core star polymers. Other substrates (less hydrophobic alkyl ketones and aromatic ketone) were also efficiently hydrogenated into the corresponding sec‐alcohols with the star catalyst in aqueous media. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 373–379, 2010  相似文献   

10.
Poly(vinyl amine) (PVAm)‐based amphiphilic glycopolymers were synthesized by a two‐step method, that is dextran molecules (Dex, Mw = 1500) were attached to the PVAm backbone by reacting amine groups with dextran lactone, and then, hexanoyl groups (Hex) were attached by reacting the PVAm free amine groups with N‐(hexanoyloxy)succinimide. By adjustment of the feed ratios of Dex/Hex, amphiphilic comb‐like glycopolymers with various hydrophilic and hydrophobic balances were prepared, and their structures were characterized by 1H NMR. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)‐coated coverslips by water contact angle measurements. The results show that the amphiphilic glycopolymers need about 20 mol % of dextran attachment to make an effective hydrophilic coating. In comparison with the one‐step reaction by addition of dextran lactone and alkyl succinimide simultaneously, the two‐step approach can attach Dex on PVAm as high as possible in the first step, and offers quantitative advantages in controlling the ratio of hydrophilic and hydrophobic chains along the PVAm backbone, resulting in increased water solubility for the final amphiphilic glycopolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 192–199, 2006  相似文献   

11.
The first example of amphiphilic glyco‐homopolymers is reported and their aggregation properties as a function of solution pH are studied. Two structurally similar polymers with different hydrophobicity (C8 and C6 alkyl chains) are examined. Both polymers form micelle‐type aggregates in aqueous solution. The size and micro‐environment of the aggregates are found to be strongly dependent on solution pH because of the state of protonation of the tertiary amine group. At acidic pH, swollen multi‐micellar aggregates are formed, presumably because of the electrostatic repulsion among the ammonium ions. At basic pH more compact particles are found, which further co‐assemble to generate either garland type (C8) or fractal‐aggregates (C6).  相似文献   

12.
Hyperbranched polybenzimidazoles (HBPBIs) were successfully synthesized by condensation polymerization of 1,3,5‐benzenetricarboxylic acid (BTA) and 3,3′‐diaminobenzidine (DAB) in polyphosphoric acid (PPA) at 190 °C. Different monomer addition manners and molar ratios resulted in different polymers, that is, simultaneous addition of BTA and DAB with the molar ratio of 1:1 (manner 1) gave carboxyl‐terminated HBPBI (HBPBI‐1), whereas the addition of BTA portion‐wise to DAB solution in PPA with the molar ratio of DAB:BTA = 2:1 (manner 2) yielded amine‐terminated HBPBI (HBPBI‐2). The free carboxyl and amino groups of HBPBI‐1 and HBPBI‐2 could further react with o‐diaminobenzene and benzoic acid, respectively, to form the chemically modified polymers. Except HBPBI‐2, all the HBPBIs showed good solubility in some organic solvents (e.g., dimethyl sulfoxide and N,N‐dimethylacetamide). Thermogravimetric analysis measurement revealed that HBPBIs except HBPBI‐1 had high thermal stability (>450 °C). HBPBI membranes with good mechanical properties were obtained by crosslinking treatment of partially chemically modified HBPBIs with terephthaldehyde (TPA) during the film cast process. The HBPBI membranes had high phosphoric acid uptake and the phosphoric acid‐doped HBPBI‐6 (40% o‐diamino groups were reacted with benzoic acid) membrane showed higher tensile strength than the acid‐doped commercial PBI despite the higher doping level of the former. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1150–1158, 2007  相似文献   

13.
A series of organo‐soluble spherical gold nanoparticles (AuNPs) were prepared through the reduction of HAuCl4 by NaBH4 in the presence of amphiphilic hyperbranched polymers that had a hydrophilic hyperbranched polyethylenimine core and a hydrophobic shell formed by many palmitamide (C16) chains. For comparison, the corresponding linear polymeric analog derived from linear polyethylenimine was also used to prepare the organo‐soluble AuNPs. The obtained AuNPs were characterized by transmission electron microscopy. It was found that higher feed ratio of polymer to HAuCl4 and utilization of polymers with higher C16 density usually resulted in smaller AuNPs with relatively lower polydispersity. Except of the polymer having the pronounced low molecular weight, the molecular weight and the morphology of the amphiphilic polymers had almost no obvious effect on the size of the formed AuNPs. These organo‐soluble AuNPs could be used as efficient catalysts for the biphasic catalytic reduction of 4‐nitrophenol by NaBH4. Their apparent rate coefficients had correlation with the molecular weight of the used amphiphilic polymers, but were less relevant to the morphology of these polymers. These organo‐soluble AuNPs could be conveniently recovered and reused many times. The morphology of the capping polymers had obvious effect on the lifetime of the AuNPs catalysts in the catalytic reduction of 4‐nitrophenol. Except of the pronounced low molecular weight hyperbranched polymer, the other hyperbranched ones with relatively high molecular weight rendered the AuNPs to have bigger turnover number values than their linear analog. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Amphiphilic polylactides (PLAs) with well‐defined architectures were synthesized by ring‐opening polymerization of AB monomers (glycolides) substituted with both a long chain alkyl group and a triethylene glycol segment terminated in either a methyl or benzyl group. The resulting amphiphilic PLAs had number average molecular weights >100,000 g/mol. DSC analysis revealed a first‐order phase transition at ~ 20 °C, reflecting the crystalline nature of the linear alkyl side chains. Polymeric micelles were prepared by the solvent displacement method in water. Dynamic light scattering measurements support formation of a mixture of 20‐nm‐diameter unimolecular micelles and 60‐nm particles comprised of an estimated 25 polymer molecules. UV–vis characterization of micelles formed from acetone–water solutions containing azobenzene confirmed encapsulation of the hydrophobic dye, suggesting their potential as new amphiphilic PLAs as drug delivery vehicles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5227–5236, 2007  相似文献   

16.
Novel hyperbranched poly(amido amine)s containing tertiary amines in the backbones and acryl as terminal groups were synthesized via the Michael addition polymerizations of trifunctional amines with twofold molar diacrylamide. The hyperbranched structures of these poly(amido amine)s were verified by 13C NMR (INVGATE). The polymerization mechanisms were clarified by following the polymerization process with NMR method, and the results show that the reactivity of secondary amine formed in situ is much lower than that of the secondary amine in 1‐(2‐aminoethyl) piperazine (AEPZ) ring and the primary amine. The secondary amine formed in situ was almost kept out of the reaction before the primary and secondary amines in AEPZ were consumed, leading to the formation of the AB2 intermediate, and the further reaction of the AB2 yielded the hyperbranched polymers. The molecular weights and properties of poly(amindo amine)s obtained were characterized by GPC, DSC, and TGA, respectively. Based on the reaction of active acryl groups in the polymers obtained with glucosamine, hyperbranched polymers containing sugar were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5127–5137, 2005  相似文献   

17.
Complex amphiphilic polymers were synthesized via core‐first polymerization followed by alkylation‐based grafting of poly(ethylene oxide) (PEO). Inimer 1‐(4′‐(bromomethyl)benzyloxy)‐2,3,5,6‐tetrafluoro‐4‐vinylbenzene was synthesized and subjected to atom transfer radical self‐condensing vinyl polymerization to afford hyperbranched fluoropolymer (HBFP) as the hydrophobic core component with a number‐averaged molecular weight of 29 kDa and polydispersity index of 2.1. The alkyl halide chain ends on the HBFP were allowed to undergo reaction with monomethoxy‐terminated poly(ethylene oxide) amine (PEOx‐NH2) at different grafting numbers and PEO chain lengths to afford PEO‐functionalized HBFPs [(PEOx)y‐HBFPs], with x = 15 while y = 16, 22, or 29, x = 44 while y = 16, and x = 112 while y = 16. The amphiphilic, grafted block copolymers were found to aggregate in aqueous solution to give micelles with number‐averaged diameters (Dav) of 12–28 nm, as measured by transmission electron microscopy (TEM). An increase of the PEO:HBFP ratio, by increase in either the grafting densities (y values) or the chain lengths (x values), led to decreased TEM‐measured diameters. These complex, amphiphilic (PEOx)y‐HBFPs, with tunable sizes, might find potential applications as nanoscopic biomedical devices, such as drug delivery vehicles and 19F magnetic resonance imaging agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3487–3496, 2010  相似文献   

18.
The addition of lithium chloride promoted the coupling reaction of hydrocarbon solutions of poly(styryl)lithium (PSLi) and poly(isoprenyl)lithium (PILi) with 3‐dimethylaminopropyl chloride to form the corresponding ω‐dimethylamino‐functionalized polymers. Quantitative amine functionalization was achieved for PSLi and PILi in the presence of 1 and 10 equivalents, respectively, of LiCl in benzene; the functionalization efficiency was only 67% for PSLi and 85% for PILi in the absence of LiCl. The polymer products were characterized by size exclusion chromatography, thin‐layer chromatography, and amine end‐group titration. The pure amine‐functionalized polymers were isolated by silica gel column chromatography. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 145–151, 2000  相似文献   

19.
A novel series of hyperbranched polyether polyols with various n‐alkyl amine cores (mono‐ and bifunctional) and photoactive cores (benzylamine and 1‐naphthylmethylamine) have been prepared. Polymerization of glycidol was carried out in two ways, starting directly from primary amine initiators and from bisglycidolized amine initiators. NMR spectroscopy and size exclusion chromatography (SEC) showed good control over the molecular weights only, when bisglycidolized amines were used. Molecular weights and polydispersity of the hyperbranched polyglycerols prepared with these initiator‐cores were in the range of 1600 to 8400 g/mol and of 1.5 to 2.5, respectively. MALDI‐ToF mass spectrometry confirmed covalent attachment of the functional cores to the hyperbranched polymers. When using the bis‐glycidolized amine‐initiators, only functionally initiated polymers could be observed. In contrast, the direct amine‐initiated polymers always showed the presence of nonfunctionalized PG homopolymer. Steady‐state and time‐resolved fluorescence measurements further support covalent attachment and site isolation of the functional initiators within the hyperbranched structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2049–2061, 2008  相似文献   

20.
Well-defined, positively charged, amphiphilic copolymers containing long alkyl side chains were used as stabilizers in the miniemulsion polymerization of styrene. The copolymers were prepared by controlled free-radical copolymerization of styrene and vinyl benzyl chloride using either the reversible addition-fragmentation chain transfer method or TEMPO-mediated polymerization. The benzyl chloride moities were modified by two different long alkyl chain tertiary amines (N,N-dimethyldodecyl amine and N,N-dimethylhexadecyl amine) to yield the amphiphilic copolymers with vinylbenzyl dimethyl alkyl ammonium chloride units. Owing to their high structural quality, only a small amount of these copolymers was required to stabilize the latex particles (0.5–2 wt% vs styrene). Moreover, in the absence of any hydrophobic agent, the amphiphilic comblike copolymer preserved the colloidal stability of both the initial liquid miniemulsion and the final latex. Ill-defined, analogous copolymers were synthesized by conventional free-radical polymerization and in comparison, exhibited poor stabilization properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号