首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the electrophoretic motion of a spherical particle in an aqueous electrolyte solution in a T-shaped rectangular microchannel, where the size of the channel is close to that of the particle. This is a complicated transient process where the electric field, the flow field, and the particle motion are coupled together. A theoretical model was developed to investigate the influences of the applied electric potentials, the zeta potentials of the channel and the particle, and the size of the particle on the particle motion. A direct numerical simulation method using the finite element method is employed. This method employs a generalized Galerkin finite element formulation that incorporates both equations of the fluid flow and equations of the particle motion into a single variational equation where the hydrodynamic interactions are eliminated. The ALE method is used to track the surface of the particle at each time step. The numerical results show that the electric field in the T-shaped microchannel is influenced by the presence of the particle, and that the particle motion is influenced by the applied electric potentials and the zeta potentials of the channel and the particle. The path of the particle motion is dominated by the local electric field and the ratio of the zeta potential of the channel to that of the particle. The particle's velocity is also dependent on its size in a small channel.  相似文献   

2.
Ai Y  Qian S 《Electrophoresis》2011,32(9):996-1005
Nanopore-based sensing of single molecules is based on a detectable change in the ionic current arising from the electrokinetic translocation of individual nanoparticles through a nanopore. In this study, we propose a continuum-based model to investigate the dynamic electrokinetic translocation of a cylindrical nanoparticle through a nanopore and the corresponding ionic current response. It is the first time to simultaneously solve the Poisson-Boltzmann equation for the ionic concentrations and the electric field contributed by the surface charges of the nanopore and the nanoparticle, the Laplace equation for the externally applied electric field, and the modified Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian method. Current blockade due to the particle translocation is predicted when the electric double layers (EDLs) of the particle and the nanopore are not overlapped, which is in qualitative agreement with existing experimental observations. Effects due to the electric field intensity imposed, the EDL thickness, the nanopore's surface charge, the particle's initial orientation and lateral offset from the nanopore's centerline on the particle translocation including both translation and rotation, and the ionic current response are comprehensively investigated. Under a relatively low electric field imposed, the particle experiences a significant rotation and a lateral movement. However, the particle is aligned with its longest axis parallel to the local electric field very quickly due to the dielectrophoretic effect when the external electric field is relatively high.  相似文献   

3.
The electrophoretic motion of a long dielectric circular cylinder with a general angular distribution of its surface potential under a transversely imposed electric field in the vicinity of a large plane wall parallel to its axis is analyzed. The thickness of the electric double layers adjacent to the solid surfaces is assumed to be much smaller than the particle radius and the gap width between the surfaces, but the applied electric field can be either perpendicular or parallel to the plane wall. The presence of the confining wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases viscous retardation of the moving particle; (3) an electroosmotic flow of the suspending fluid may exist due to the interaction between the charged wall and the tangentially imposed electric field. Through the use of cylindrical bipolar coordinates, the Laplace and Stokes equations are solved analytically for the two-dimensional electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the quasisteady electrophoretic and angular velocities of the cylindrical particle are obtained. To apply these formulas, one has only to calculate the multipole moments of the zeta potential distribution at the particle surface. It is found that the existence of a plane wall near a nonuniformly charged particle can cause its translation or rotation which does not occur in an unbounded fluid with the same applied electric field.  相似文献   

4.
Nanoparticle electrophoretic translocation through a single nanopore induces a detectable change in the ionic current, which enables the nanopore-based sensing for various bio-analytical applications. In this study, a transient continuum-based model is developed for the first time to investigate the electrokinetic particle translocation through a nanopore by solving the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential and the Navier-Stokes equations for the flow field using an arbitrary Lagrangian-Eulerian (ALE) method. When the applied electric field is relatively low, a current blockade is expected. In addition, the particle could be trapped at the entrance of the nanopore when the electrical double layer (EDL) adjacent to the charged particle is relatively thick. When the electric field imposed is relatively high, the particle can always pass through the nanopore by electrophoresis. However, a current enhancement is predicted if the EDL of the particle is relatively thick. The obtained numerical results qualitatively agree with the existing experimental results. It is also found that the initial orientation of the particle could significantly affect the particle translocation and the ionic current through a nanopore. Furthermore, a relatively high electric field tends to align the particle with its longest axis parallel to the local electric field. However, the particle's initial lateral offset from the centerline of the nanopore acts as a minor effect.  相似文献   

5.
An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant, and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only the monopole, dipole, and quadrupole moments of the zeta-potential distributions at the particle and cavity surfaces. It is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic driving force to the particle velocities can be superimposed as a result of the linearity of the problem.  相似文献   

6.
A charged spherical particle is concentrically positioned in a converging-diverging nanotube filled with an electrolyte solution, resulting in an electric double layer (EDL) forming around the particle's surface. In the presence of an axially applied electric field, the particle electrophoretically migrates along the axis of the nanotube due to the electrostatic and hydrodynamic forces acting on the particle. In contrast to a cylindrical nanotube with a constant cross-sectional area in which the electric field is almost uniform, the presence of a converging-diverging section in a nanotube alters the electric field, perturbs the charge distribution, and induces a pressure gradient and a recirculating flow that affect the electrostatic and hydrodynamic forces acting on both the particle and the fluid. Depending on the magnitude of the surface charge density along the nanotube's wall, the particle's electrophoretic motion may be significantly accelerated as the particle transverses the converging-diverging section. A continuum model consisting of the Nernst-Planck, Poisson, and Navier-Stokes equations for the ionic concentrations, electric potential, and flow field is implemented to compute the particle's velocity as a function of the particle's size, the nanotube's geometry, surface charges, electric field intensity, bulk electrolyte concentration, and the particle's location. When the particle is negatively charged and the wall of the nanotube is uncharged, the particle migrates in the direction opposite to that of the applied electric field and the presence of the converging-diverging section significantly accelerates the particle's motion. This, however, is not always true when the nanotube's wall is charged with the same sign as that of the particle. Once the ratio of the surface charge density of the nanotube's wall to that of the particle exceeds a certain value, the negatively charged particle will not translocate through the tube toward the anode and does not attain the maximum velocity at the throat of the converging-diverging section. One can envision such a device to be a nanofilter that allows molecules with surface charge densities much higher than that of the wall to go through the nanofilter, while preventing molecules with surface charge densities lower than that of the wall from passing through the nanofilter. The induced recirculating flow may be used to enhance mixing and to stretch, fold, and trap molecules in nanofluidic detectors and reactors.  相似文献   

7.
Autonomous motions of a spherical nanoparticle in a nanotube filled with an electrolyte solution were investigated using a continuum theory, which consisted of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. Contrary to the usual electrophoresis, in which an external electric field is imposed to direct the motion of charged particles, the autonomous motion originates from the self-generated electric field due to the ionic concentration polarization of the liquid medium surrounding an asymmetrically charged particle. In addition to the particle motion, the interaction between the electric field generated and the free charges of the polarized solution induces electroosmotic flows. These autonomous motions of the fluid as well as the particle were examined with focus on the effects of the surface-charge distribution of the particle, the size of the nanotube, and the thickness of the electric double layer, which affected the direction and the speed of the particle significantly.  相似文献   

8.
A custom designed vertical oscillation rheometer (VOR) is used for the rheological measurements of electrorheological (ER) fluids consisting of 15 and 20 vol.% semiconducting polyaniline particles suspended in silicone oil. The viscoelastic material functions, including complex viscosity and complex shear modulus, are measured via geometric parameters, measured force, and applied strain of the VOR. Viscoelastic properties of the ER fluids are also measured as a function of applied electric field strength and particle concentration. The VOR, equipped with a high voltage generator, can easily be constructed and used to measure ER properties. It is further found that polyaniline suspensions behave as viscoelastic materials in an electric field. In linear viscoelastic conditions, elasticity was promoted with the increment of electric field due to particle chain structure in the presence of the applied electric field. It is also found that the applied electric field rather than particle concentration enhanced the elasticity of ER fluids.  相似文献   

9.
We consider a constant velocity charged particle travelling in an arbitrary direction by a cholesteric liquid crystal. We calculate the time-dependent-induced polarisation in the cholesteric by the electric field generated by the charged particle. Thus, we express the radiation field originated by the induced dipole distribution in the cholesteric in terms of the cholesteric susceptibility. To simplify our procedure, we write Maxwell equations and the constitutive non-local equation for the cholesteric, in the Fourier space since in this representation the equations turn to be simple difference equations. We solve these equations iteratively by assuming small values for the cholesteric birefringence to find the first-order electric field produced by the charge particle immersed in the cholesteric. This allows us to obtain the dominant contributions of the radiation field one of which is the usual Cherenkov effect. We focus in the terms occurring for hypoluminic charged particle and calculate the radiated energy as a function of observing angle, frequency, velocity and direction with respect to the cholesteric axis.  相似文献   

10.
The small gap distance separating a spherical colloidal particle in electrophoretic motion from a planar nonconducting surface is a required parameter for calculating its electrophoretic mobility. In the presence of an externally applied electric field, this gap distance is determined by balancing the van der Waals, electrical double layer interaction, and gravitational forces with a dielectrophoretic (DEP) force. Here, the DEP force was determined analytically by integration of the Maxwell stress over the surface of the particle. The account of this force showed that its previous omission from the analysis always resulted in underpredicted gap distances. Furthermore, the DEP force dominated under conditions of low particle density or high electric field strength and led to much higher gap distances on the order of a few microns. In one particular case, a combination of low particle density and small particle size produced two possible equilibrium gap distances for the particle. However, the particle was unstable in the second equilibrium position when subjected to small perturbations. In general, larger particles had smaller gap sizes. The effects of four other parameters on gap distance were studied, and gap distances were found to increase with lower particle density, higher electric field strength, higher particle and wall zeta potentials, and lower Hamaker constants. Retardation effects on van der Waals attraction were considered.  相似文献   

11.
With the help of the exact classical path representation of the time dependent propagator the dynamics of a charged particle in a Penning trap in the presence of an additional classical, time-dependent electric field is investigated. In this way the connection between quantum and classical dynamics is exhibited in a clear way. The possibility of localizing a particle in the ground state of a Penning trap with unit probability by a suitably chosen electric field is discussed.  相似文献   

12.
There is a concentration-polarization (CP) force acting on a particle submerged in an electrolyte solution with a concentration (conductivity) gradient under an externally applied DC electric field. This force originates from the two mechanisms: (i) gradient of electrohydrodynamic pressure around the particle developed by the Coulombic force acting on induced free charges by the concentration polarization, and (ii) dielectric force due to nonuniform electric field induced by the conductivity gradient. A perturbation analysis is performed for the electric field, the concentration field, and the hydrodynamic field, under the assumptions of creeping flow and small concentration gradient. The leading order component of this force acting on a dielectric spherical particle is obtained by integrating the Maxwell and the hydrodynamic stress tensors. The analytical results are validated by comparing the surface pressure and the skin friction to those of a numerical analysis. The CP force is proportional to square of the applied electric field, effective for electrically neutral particles, and always directs towards the region of higher ionic concentration. The magnitude of the CP force is compared to that of the electrophoretic and the conventional dielectrophoretic forces.  相似文献   

13.
We quantify the phoretic migration of a spherical cation-permselective colloidal particle immersed in a binary electrolyte under a time-dependent electric field. We invoke the thin-Debye-layer approximation, where the size of ionic Debye layer enveloping the particle is much smaller than the particle radius. The imposed electric field generates ion concentration gradients, or concentration polarization, in the bulk (electroneutral) electrolyte outside the Debye layer. The bulk ion concentration polarization--and consequently the particle's phoretic velocity--evolves on the time scale for ion diffusion around the particle, which can be on the order of milliseconds for typical colloidal dimensions. Notably, concentration polarization arises here solely due to the permselectivity of the particle; it does not require non-uniform ionic transport in the Debye layer (i.e., surface conduction). Thus, the phoretic transport of a permselective particle is significantly different to that of a inert, dielectric particle, since surface conduction is necessary to achieve bulk concentration polarization in the (more commonly studied) latter case. Calculations are presented for a permselective particle under oscillatory (ac) and suddenly applied electric fields. In the former case, the particle velocity possesses frequency-dependent components in phase and out of phase with the driving field; in the latter case, the particle approaches its terminal velocity with a long-time (algebraic) tail.  相似文献   

14.
The electrophoretic motion of a spherical nanoparticle, subject to an axial electric field in a nanotube filled with an electrolyte solution, has been investigated using a continuum theory, which consists of the Nernst-Planck equations for the ionic concentrations, the Poisson equation for the electric potential in the solution, and the Stokes equation for the hydrodynamic field. In particular, the effects of nonuniform surface charge distributions around the nanoparticle on its axial electrophoretic motion are examined with changes in the bulk electrolyte concentration and the surface charge of the tube's wall. A particle with a nonuniform charge distribution is shown to induce a corresponding complex ionic concentration field, which in turn influences the electric field and the fluid motion surrounding the particle and thus its electrophoretic velocity. As a result, contrary to the relatively simple dynamics of a particle with a uniform surface charge, dominated by the irradiating electrostatic force, that with a nonuniform surface charge distribution shows various intriguing behaviors due to the additional interplay of the nonuniform electro-osmotic effects.  相似文献   

15.
A novel micro-mixer based on the induced-charge electrokinetic motion of an electrically conducting particle is proposed and numerically demonstrated in this paper. For most microfluidic applications, it is desired to mix different streams of solutions rapidly in a continuous flow mode. Therefore, in this work, we consider a mixing chamber containing an electrically conducting particle and the mixing chamber is located in the middle of a microchannel. Vortices are generated around the electrically conducting particle in an aqueous solution due to the interaction of the applied electric field and the induced surface charge on the particle. These vortices will enhance significantly the mixing of different solutions around the particle. The effectiveness of mixing the two streams entering the mixing chamber is numerically studied as functions of the applied electric field. Excellent mixing can be achieved in this system under two perpendicularly applied electric fields. The proposed micro-mixer is simple and easy to be fabricated for lab-on-a-chip applications.  相似文献   

16.
A theory of the dynamic electrophoretic mobility of a spherical soft particle (that is, a polyelectrolyte-coated spherical particle) in an oscillating electric field is presented. In the absence of the polyelectrolyte layer a spherical soft particle becomes a spherical hard particle, while in the absence of the particle core it tends to a spherical polyelectrolyte. The present theory thus covers two extreme cases, that is, dynamic electrophoresis of hard particles and that of spherical polyelectrolytes. Simple analytic mobility expressions are derived. It is shown how the dynamic electrophoretic mobility of a soft particle depends on the volume charge density distributed in the polyelectrolyte layer, on the frictional coefficient characterizing the frictional forces exerted by the polymer segments on the liquid flow in the polyelectrolyte layer, on the particle size, and on the frequency of the applied oscillating electric field. Copyright 2001 Academic Press.  相似文献   

17.
利用介观模拟的耗散粒子动力学法, 对纺丝射流稳定直线段区域进行变电场模拟, 并以三维的射流路径呈现出来. 研究了不同控制频率下的变电场对聚合物分子链的运动情况、 射流直径及下落行为的影响. 结果表明, 与稳定电场相比, 周期性改变电场能够有效提高分子链的拉伸, 使射流直径减小, 较低的控制频率能够加速射流的下落, 从而获得较细的纤维.  相似文献   

18.
The electrophoresis of a rigid, charge-regulated, spherical particle normal to a large disk is investigated under the conditions of low surface potential and weak applied electric field. We show that, although the presence of a charged disk does not generate an electroosmotic flow, it affects particle motion appreciably through inducing charge on its surface and establishing an osmotic pressure field. The competition between the hydrodynamic force and the electric force may yields a local extremum in mobility; it is also possible that the direction of particle movement is reversed. In general, if a particle remains at constant surface potential, a decrease in the thickness of double layer has the effect of increasing the electrostatic force acting on it so that its mobility increases. However, this might not be the case for a charged-regulated particle because an excess hydrodynamic force is enhanced. For a fixed separation distance, the influence of a charged disk on mobility may reduce to a minimum if the bulk concentration of hydrogen ion is equal to the dissociation constant of the monoprotic acidic functional groups on particle surface.  相似文献   

19.
This paper presents a fundamental study of particle electrokinetic focusing in a single microchannel constriction. Through both experiments and simulations, we demonstrate that such dielectrophoresis‐induced particle focusing can be implemented in a much smaller magnitude of DC‐biased AC electric fields (10 kV/m in total) as compared to pure DC electric fields (up to 100 kV/m). This is attributed to the increase in the ratio of cross‐stream particle dielectrophoretic velocity to streamwise electrokinetic velocity as only the DC field component contributes to the latter. The effects of the 1 kHz frequency AC to DC electric field ratio on particle trajectories and velocity variations through the microchannel constriction are also examined, which are found to agree with the simulation results.  相似文献   

20.
The Schrödinger equation for a charged particle in the field of a nonrelativistic electric quadrupole in two dimensions is known to be separable in spherical coordinates. We investigate the occurrence of bound states of negative energy and find that the particle can be bound by a quadrupole of any magnitude. This result is remarkably different from the one for a charged particle in the field of a nonrelativistic electric dipole in three dimensions where a minimum value of the dipole strength is necessary for capture. Present results differ from those obtained earlier by other author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号