首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physicochemical properties of ultrafiltration membranes were studied by scanning electron microscopy. The membrane elemental composition (carbon, oxygen, and sulfur) was determined by energy dispersion analysis. The elements were shown to be homogeneously distributed along the membrane. A homogeneous pore distribution on the membrane surface was found after covering it with a thin gold layer. The pore sizes are 50 nm. The topographic analysis of the permeate-side of the membrane indicated its anisotropy.  相似文献   

2.
In this research, surfaces of eight ancient metal arrowheads were investigated regarding chemical composition, homogeneity, and products of corrosion. To perform that, two nondestructive techniques were applied: Scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray powder diffractometry (XRPD). Importantly, both methods did not require sampling, cutting, nor significant cleaning of the historical artifacts, which made the measurements not only nondestructive but noninvasive too. SEM-EDS measurements provided information on the morphology and elemental composition of the surfaces of the studied objects as well as the distribution of chemical elements on the surfaces and supported crystalline phase analysis. It was revealed that the arrowheads were cast of tin bronze, but some of them contained high amounts of lead and admixtures of antimony and arsenic while copper and tin oxides and lead carbonates were found as the major corrosion products. In some cases, distribution of elements in the surface exhibited serious nonhomogeneity, probably resulting from limited solubility of the casting metals and degradation processes. Based on the obtained results, authenticity and declared provenience of the arrowheads were assessed in reference to the characteristics of similar objects described in literature.  相似文献   

3.
Ion beam slope cutting (IBSC) has been developed as a preparation method for SEM and TEM to avoid the problems which occur using the common mechanical preparation techniques. IBSC has been practised on metals, plastic composites ceramics and alterated mediaeval glass, too. For the investigation of the 3-dimensional microstructure of the glass samples, IBSC has been the only method, which will enable a small cut without destroying the valuable cultural heritage. By SEM investigations of the ion beam cut, the alteration process of mediaeval glass has been observed starting on the surface and spreading into deeper zones of glass. Vertical and lateral cracks are only developing and spreading in the surroundings of crater erosions. The cracks cause splitting of parts near the surface of glass. Inside the cracks, harmful atmospheric gases, like SO2 and CO2, are reacting with the main glass components to alterations salts, which will build up a white and black crust on the surface and in zones near the surface.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

4.
This paper presents an integrated study on nine natural Chinese bronze patinas without causing any damage to the bronze substrates, employing five modern analytical techniques including X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) and Raman spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), and inductively coupled plasma mass spectrometry (ICP‐MS). Two artificial Chinese bronze patinas were also investigated by the same techniques for comparative purposes. As a result, XRD determined the chemical compositions of all selected samples and showed that the primary compound was malachite in natural soil environment under the general situation. Meanwhile, some interesting corrosion products such as gerhardtite and free copper were also observed. Three groups were classified according to the XRD results in order to provide a deeper insight into their spectroscopic characterization. Spectroscopic data of these patinas from FT‐IR and Raman spectroscopy are shown and interpreted in detail. ICP‐AES and ICP‐MS analyses provided valuable quantitative information, and made the study of the patinas more profound. Furthermore, all analytical results indicated that bronze patinas are extremely complex by virtue of the storage environment and their substrate alloys. The natural samples were rather heterogeneous and the artificial samples, especially the sample formed in the laboratory, were rather homogeneous of which the chemical constituents could be well defined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In context to the ion induced surface nanostructuring of metals and their burrowing in the substrates, we report the influence of Xe and Kr ion‐irradiation on Pt:Si and Ag:Si thin films of ~5‐nm thickness. For the irradiation of thin films, several ion energies (275 and 350 keV of Kr; 450 and 700 keV of Xe) were chosen to maintain a constant ratio of the nuclear energy loss to the electronic energy loss (Sn/Se) in Pt and Ag films (five in present studies). The ion‐fluence was varied from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images show ion beam induced systematic surface nano‐structuring of thin films. The surface nano‐structures evolve with the ion fluence. The RBS spectra show fluence dependent burrowing of Pt and Ag in Si upon the irradiation of both ion beams. At highest fluence, the depth of metal burrowing in Si for all irradiation conditions remains almost constant confirming the synergistic effect of energy losses by the ion beams. The RBS analysis also shows quite large sputtering of thin films bombarded with ion beams. The sputtering yield varied from 54% to 62% by irradiating the thin films with Xe and Kr ions of chosen energies at highest ion fluence. In the paper, we present the experimental results and discuss the ion induced surface nano‐structuring of Pt and Ag and their burrowing in Si. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A three‐dimensional (3D) lamellar structure of a poly(styrene‐block‐isoprene) block copolymer was observed at submicrometer and micrometer levels by scanning electron microscopy combined with a focused ion beam (FIB–SEM). The 3D lamellar structure with an exceptionally large periodicity, about 0.1 μm, was successfully reconstructed, and the size of the reconstructed image by FIB–SEM was 6.0 × 6.0 × 4.0 μm3, which was greater than the transmission electron microtomography data, 3.8 × 3.9 × 0.24 μm3, by a factor of about 40. This result indicates that 3D reconstruction using FIB–SEM is quite useful for direct 3D observations, especially analyses of polymeric materials at the submicrometer and micrometer levels. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 677–683, 2007  相似文献   

7.
Effect of bicarbonate ions on the copper passivity and its local breakdown is studied by cyclic voltammetry, Auger spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. Comparing data for solutions with various sodium bicarbonate concentrations shows copper to undergo pitting in 0.02 M NaHCO3, whereas it remains stably passive in 0.10 M NaHCO3. Independent studies suggest that carbonates play a protective role in stabilization of the oxide-hydroxide passive film on copper.  相似文献   

8.
The thickness of copper films (100–450 nm) on silicon substrates was determined by electron probe microanalysis (EPMA) applying (z) procedures of Pouchou and Pichoir. Film thickness was calculated from experimental k-ratios analyzed with electron energies between 6 and 30 keV using commercial software (LAYERF distributed by CAMECA). The influence of the incident electron energy and X-ray line chosen for analysis on the results was investigated. Accuracy of film thickness determination was evaluated by comparison with Rutherford backscattering spectroscopy (RBS) and secondary ion mass spectrometry (SIMS). The difference between layer thicknesses determined with EPMA and RBS is in general less than 2%, if EPMA measurements are performed with various electron energies. Layer thicknesses determined with Cu-L are mostly closer to values obtained by RBS than those derived from Cu-K radiation. Preliminary SIMS measurements yielded inconsistent results and, thus, cannot be used in this case to determine the layer thickness of Cu films on Si accurately.  相似文献   

9.
Nanoscale chemical analysis of functional polymer systems by electron microscopy, to gain access into degradation processes during the materials life cycle, is still a formidable challenge due to their beam sensitivity. Here a systematic study on the different stages of degradation in a P3HT-PCBM organic photovoltaic (OPV) model system is presented. To this end pristine samples, samples with (reversibly) physisorbed oxygen and water and samples with (irreversibly) chemisorbed oxygen and water are imaged utilizing the full capabilities of cryogenic STEM-EELS. It is found that oxygen and water are largely physisorbed in this system leading to significant effects on the band structure, especially for PCBM. Quantification proves that degradation concomitantly decreases the amount of CC bonds and increases the amount of C O C bonds in the sample. Finally, it is shown that with a pulsed electron beam utilizing a microwave cavity, beam damage can be significantly reduced which likely extends the possibilities for such studies in future.  相似文献   

10.
New polymer blends based on cellulose and poly(vinyl pyrrolidone) (PVP) were obtained using a mixture of N=methyl morpholine N-oxide (NMMO) and dimethylsulfoxide (DMSO) as a common solvent system. Materials are obtained after the removing of NMMO-DMSO in three of their different solvents, namely i) H2O, ii) a mixture 95/5 vol/vol hexamethyl phosphororri amide (HMPA) DMSO and iii) a mixture of 95/5 vol/vol dioxan/water.Scanning electron microscopy techniques were extensively used and lead to the conclusion that all these blends in the composition range 25/75 w/w to 75/25 w/w cellulose/PVP are two-phase systems in which cellulose forms a continuous phase. Preliminary results from calorimetric and dynamic mechanical measurements confirm these observations. Furrthermore, it is shown that using dioxanwater preserves the initial cellulose PVP composition, allowing to get blends with the desired PVP fraction. Although it is not the case with HMPA/DMSO which dissolves a part of PVP, its use leads to assymmetric, porous structures.  相似文献   

11.
A theory of fully adiabatic dissociative electrochemical processes of the electron transfer that are induced by scanning tunneling microscopy is constructed. Adiabatic free energy surfaces are calculated and properties of their symmetry are examined under various conditions. Diagrams of kinetic regimes, which characterize possible kinetic processes, which may proceed in the system under consideration, are constructed in the space of model parameters. Dependence of activation free energy on the bias voltage, overvoltage, physical properties of a molecule, and intensity of interaction of a molecule with an electrode and the tip of the scanning tunneling microscope is explored.  相似文献   

12.
Morphology of polystyrene-block-poly(acrylic acid) vesicles was imaged by various modes of scanning electron microscopy (SEM), including recently developed wet scanning transmission electron microscopy (wet-STEM) by means of which we were able to follow the decrease in the thickness of a liquid solvent layer around the vesicles during controlled evaporation of water from the sample. Results show that wet-STEM allows for imaging of nanosized polymeric particles in the presence of the solvent.  相似文献   

13.
The triple melting behavior and lamellar morphologies of isotactic polystyrene isothermally crystallized from the glassy state have been investigated by differential scanning calorimetry (DSC), temperature-modulated DSC and transmission electron microscopy (TEM). The combination of thermal analysis measurements and morphological observations indicates that: (1) The lowest endothermic peak, the so-called “annealing peak” (Ta), is not associated with the melting of the subsidiary crystals formed by secondary crystallization as often suggested in the literature, but probably with a constrained interphase between the amorphous and crystalline regions; (2) Within spherulites two lamellar populations with different degrees of perfection (or thermal stability) are confirmed by direct TEM observations following partial melting experiments, which are responsible for the so-called double melting peaks (Tm,1 and Tm,2) at higher temperatures observed in DSC curves; (3) The highest endothermic peak (Tm,2) is partially originated from the melting of the recrystallized lamellae formed during heating process in DSC.  相似文献   

14.
On model substances of Cu-Sn(Pb) solders it is shown by the combined use of several physical analytical methods that the intermetallic compounds formed during the annealing process have a crystalline structure, which can be observed also three-dimensionally by ion etching. Moreover, grain boundaries as well as phases become visible, and it is possible to determine the crystallographic orientation of the individual crystals in the Cu starting material and in the diffusion zones by means of the Kossel technique. As a result of the investigations, conclusions can be drawn with respect to the diffusion process, especially also to the crystallographic structure of the diffusion zones and the dendritic growth.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

15.
The submicrometer structure of the temperature-sensitive hydrogels was observed by field emission scanning electron microscopy (FESEM), using synthesized hydrogels of different outer size and shape. The hydrogel structure strongly depends on the homogeneity of the polymer chains during the crosslinking process. A porous structure of the poly(vinyl-methyl-ether) (PVME) bulkgel, synthesized by electron beam irradiation of a concentrated polymer solution, was observed in the swollen state because the phase transitions temperature is acquired through the crosslinking process. Photo-crosslinking reaction of the poly(N-isopropylacrylamide) (PNIPAAm) copolymer in the dry state to form PNIPAAm thin films leads to a rather homogeneous structure. In the shrunk state both gels possess structure being more compact than in the swollen state. We also synthesized PVME and PNIPAAm gels with small outer dimensions in the range of some 100 nm. Heating of the thermo-sensitive polymer in diluted solutions collapses the polymer chains or aggregates. The crosslinking reaction (initiated by electron beam or UV irradiation) of these phase separated structures produces thermo-sensitive microgels. These microgel particles of PVME and PNIPAAm are spherical shape having diameters in the range of 30 - 500 nm.  相似文献   

16.
We report on the fabrication of ZnO nanowall networks decorated with ZnS nanostructures on aluminum substrates using simple chemical route. The structural features and elemental constituents of the ZnS/ZnO heterostructure systems have been extensively studied using electron microscopy and energy dispersive X‐ray spectroscopy. The light emission characteristics of the bare and heterostructured systems have been analyzed using room temperature photoluminescence spectroscopy. The decoration of ZnS nanostructures over ZnO nanowalls has been evidenced through secondary ion mass spectrometry (SIMS). The ‘matrix effect’ has been found to be prominent during SIMS analysis of the bare and heterostructured nanowalls indicating the presence of ZnS phase over ZnO surface. ‘MCs+‐SIMS’ has been employed to suppress the matrix effect and is found to be potentially effective in making a semi‐quantitative estimation of Zn and O surface–atom concentrations in both systems. The luminescence responses of the ZnS/ZnO heterostructures have been found to be strongly dependent on the extent of ZnS phase over ZnO. The higher luminescence responses in ZnS/ZnO heterostructures fabricated with smaller ZnS nanoparticles have been explained in terms of a mechanism of charge‐carrier transfer from ZnS to ZnO. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The formation of Fe–Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg–Brentano geometry for analysing thin crystalline layers because of its lower incidence angle α and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the ζ crystals in the ESEM.  相似文献   

18.
19.
20.
This paper describes the microstructural characterisation of five simulated archaeological copper alloys, produced by modern powder technology. The chemical composition of the examined bronzes covers the major families of archaeological bronzes from antiquity until the Roman period. Light microscopy (LM), energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM) as well as two- and three-dimensional secondary ion mass spectrometry (SIMS) have been used to describe the main properties of the alloys. The results show a heterogeneous microstructure on a micrometer scale, formed by metallic and non-metallic phases. The latter are conglomerates of oxides or sulphides of major or minor elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号