首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of polythiophene derivatives with substantially higher azobenzene contents in the side chains were prepared via copolymerization of 3‐hexylthiophene with four different types of 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate. The alkyl spacers with different lengths, i.e. butyl, hexyl, octyl and undecyl groups were used between the azobenzene group and the thiophene ring. The compositions, structures and thermal properties of these polythiophene derivatives were characterized. The structural dependence of photoluminescent emission, photochromic behavior of these copolymers were systematically studied and compared with poly(3‐hexylthiophene). The results show that the azobenzene substitution renders the polythiophene some interesting optical properties that can be modulated by UV light irradiation. In the azobenzene modified polythiophene, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced transcis isomerization of the azobenzene pendant groups has a significant effect on photoluminescent emission, particularly when short spacers are used between azobenzene groups and the main chain. However, the effect becomes less prominent when longer spacers are used between the azobenzene group and the main chain. Furthermore, UV irradiation of the copolymers also resulted in an increase in intensity and broadening of bandwidth for the absorption peak associated with the polythiophene backbones. Again the magnitude of intensity changes upon UV irradiation were found to be dependent on the spacer length between the azobenzene group and polythiophene main chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of the terminal substituent of azobenzene on the properties of ABA triblock copolymers was investigated. For this study, three kinds of azobenzene‐containing monomers with different terminal substituents—6‐[4‐(4‐methoxyphenylazo)phenoxy] hexyl methacrylate, 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate, and 6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate—were used to synthesize ABA triblock copolymers PMMAzo25–PEG13–PMMAzo25/PMMAzo12–PEG13–PMMAzo12, PEMAzo14–PEG13–PEMAzo14, and PNMAzo14–PEG13–PNMAzo14, respectively, by atom transfer radical polymerization (PMMAzo is poly{6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate}, PEMAzo is poly{6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate}, and PNMAzo is poly{6‐[4‐(4‐nitrophenylazo)phenoxy]hexyl methacrylate}). These copolymers were characterized with 1H NMR spectroscopy and gel permeation chromatography and exhibited controlled molecular weights and narrow molecular weight distributions. Differential scanning calorimetry and polarizing optical microscopy showed that these copolymers had mesophases. PMMAzo25–PEG13–PMMAzo25 and PMMAzo12–PEG13–PMMAzo12 had a smectic mesophase and a nematic mesophase, whereas both PEMAzo14–PEG13–PEMAzo14 and PNMAzo14–PEG13–PNMAzo14 had a nematic mesophase. This demonstrated that the liquid‐crystalline properties of these copolymers highly depended on the terminal substituent of azobenzene. The photoresponsive behavior of these copolymers was also investigated in tetrahydrofuran solutions, and the influence of the terminal substituents attached to azobenzene was studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5190–5198, 2007  相似文献   

3.
New photocrosslinkable maleimide copolymers have been synthesized by the attachment of a tricyanopyrrolidene‐based chromophore. The 2‐(3‐cyano‐4‐(2‐{4‐[hexyl‐(6‐hydroxy‐hexyl)‐amino]‐phenyl}‐vinyl)‐5‐oxo‐1‐{4‐[4‐(3‐oxo‐3‐phenyl‐propenyl)‐ phenoxy]‐butyl}‐1,5‐dihydro‐pyrrol‐2‐ylidene)‐malononitrile chromophore exhibits nonlinear optical activity and contains a chalcone moiety that is sensitive to UV light (λ = 330–360 nm) for crosslink formation. The maleimide monomers have also been functionalized with chalcone moieties. The resultant copolymers exhibit great processability, and one of them shows a maximum electrooptic coefficient of 90 pm/V at 1300 nm. We could control the thermal stability of the electrooptic coefficient with the newly synthesized photoreactive copolymers successfully. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 531–542, 2007  相似文献   

4.
Two novel and well‐defined polymers, poly[6‐(5‐(diphenylamino)‐2‐((4‐methoxyphenyl)diazenyl)phenoxy)hexyl methacrylate] (PDMMA) and poly[6‐(4‐((3‐ethynylphenyl)diazenyl) phenoxy)hexyl methacrylate] (PDPMMA), which bear triphenylamine (TPA) incorporated to azobenzene either directly (PDMMA) or with an interval (PDPMMA) as pendant groups were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The electrochemical behaviors of PDPMMA and PDMMA were investigated by cyclic voltammograms (CV) measurement. The hole mobilities of the polymer films were determined by fitting the J‐V (current‐voltage) curve into the space‐charge‐limited current method. The influence of photoisomerization of the azobenzene moiety on the behaviors of fluorescence emission, CV and hole mobilities of these two polymers were studied. The fluorescent emission intensities of these two polymers in CH2Cl2 were increased by about 100 times after UV irradiation. The oxidation peak currents (IOX) of the PDMMA and PDPMMA in CH2Cl2 were increased after UV irradiation. The photoisomerization of the azobenzene moiety in PDMMA had significant effect on the electrochemical behavior, compared with that in PDPMMA. The changes of the hole mobility before and after UV irradiation were very small for both polymers. The HOMO energies (EHOMO, HOMO: the highest occupied molecular orbital) of side chain moieties of TPA incorporated with cis‐isomer and trans‐isomer of azobenzene in PDMMA and PDPMMA were obtained by theoretical calculation, which are basically consistent with the experimental results. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A novel polymer matrix containing amino–nitro substituted azobenzene groups was obtained by frontal polymerization. (E)‐2‐(Ethyl(4‐((4‐nitrophenyl)diazenyl)phenyl)amino)ethyl methacrylate (MDR‐1) was copolymerized with poly(ethylene glycol) diacrylate (PEGDA) using this easy and fast polymerization technique. The effect of the amount of the incorporated azo‐monomer into the polymer matrix was studied in detail and correlated to front velocity, maximum temperature, initiator concentration, and monomer conversion. The obtained materials were characterized by infrared spectroscopy (Fourier transform infrared), and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. Moreover, the optical properties of the polymers were studied by absorption spectroscopy in the UV–Vis region. Absorption spectra of the copolymers exhibit a significant blue shift of the absorption bands with respect to the azo‐monomer, due to the presence of H‐aggregates. Cubic nonlinear optical (NLO) characterizations of the PEGDA/MDR‐1 copolymers were performed according to the Z‐Scan technique. It has been proven that samples with higher MDR‐1 content (0.75 mol %) exhibited outstandingly high NLO‐activity with negative NLO‐refractive coefficients in the promising range of n2 = ?8.057 × 10?4 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
We previously reported that ABA‐type triblock copolymers with azobenzene‐containing terminal blocks can be utilized as a light‐induced reworkable adhesive that enables repeatable bonding and debonding on demand. The reworkability was based on the photoisomerization of the azobenzene moiety and concomitant softening and hardening of the azo blocks. Our aim in this study is to investigate the effect of the composition, molecular weight, and block copolymer architectures on the reworkable adhesive properties. For this purpose, we prepared AB diblock, ABA triblock, and 4‐arm (AB)4 star‐block copolymers consisting of polymethacrylates bearing an azobenzene moiety (A block) and 2‐ethylhexyl (B block) side chains and performed adhesion tests by using these block copolymers. As a result, among the ABA block copolymers with varied compositions and molecular weights, the ABA triblock copolymers with an azo block content of about 50 wt % and relatively low molecular weight could achieve an appropriate balance between high adhesion strength and low residual adhesion strength upon UV irradiation. Furthermore, the 4‐arm star‐block structure not only enhances the adhesion strength, but also maintains low residual adhesion strength when exposed to UV irradiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 806–813  相似文献   

7.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

8.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

9.
Graft copolymers of ethyl cellulose with azobenzene‐containing polymethacrylates were synthesized through atom transfer radical polymerization (ATRP). The residual hydroxyl groups on ethyl cellulose were first esterified with 2‐bromoisobutyryl bromide to yield 2‐bromoisobutyryloxy groups, which was then used to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) in the presence of CuBr/N,N,N′,N″,N″‐pentamethylenetriamine (PMDETA) as catalyst and anisole as solvent. The graft copolymers were characterized by gel permeation chromatography (GPC) and 1H‐NMR. The molecular weights of the graft copolymers increased relatively to the macroinitiator, and the polydispersities were narrow. The thermal and liquid crystalline property of the graft copolymers were investigated by differential scanning calorimeter (DSC) and polarizing optical microscope (POM). Photoresponsive property was studied under the irradiation of UV–vis light in THF solution. The graft copolymers have potential applications, including sensors and optical materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1653–1660, 2007  相似文献   

10.
The effects of solvency and mole fraction of azobenzene moieties (fPAzoMA) on the photoresponsive and fluorescence behaviors of poly(acrylic acid)‐block‐poly(6‐[4‐(4′‐methoxyphenylazo)phenoxy]hexyl methacrylate) (PAA‐PAzoMA) amphiphilic diblock copolymers were investigated using UV–vis spectroscopy and fluorescence spectroscopy. The photoresponsive behavior depended strongly on the solvency and fPAzoMA. When dissolved in a PAA‐selective solvent, PAA‐PAzoMA formed micelles with PAzoMA in the micelle core. The confinement of azobenzene moieties caused a steric hindrance, thereby markedly reducing the kinetics of photoisomerization compared with that of the unconfined PAA‐PAzoMA in a nonselective solvent. Additionally, PAA‐PAzoMA dissolved in the PAA‐selective solvent caused a blue shift of the maximum absorbance, suggesting the formation of H‐aggregates of azobenzene mesogens. The high H‐aggregate content substantially reduced the fluorescence emission. Consequently, the fluorescence emission of PAA‐PAzoMA in the nonselective solvent was more intense than that in the PAA‐selective solvent. Upon UV irradiation, the enhanced bent‐shaped cis isomers disturbed the compact packing of azobenzene mesogens, which substantially enhanced the fluorescence emission. Both the photoisomerization rate and fluorescence emission decreased with an increase in fPAzoMA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 793–803  相似文献   

11.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

12.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

13.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
In this paper, two kinds of azobenzene-functionalized polythiophene liquid-crystalline (LC) polymers with different spacer lengths (n = 6 and 11) were synthesized. The photochromic behaviors and photoresponsive property of these polymer films were investigated by means of spectrofluorophotometer, polarized optical microscope and ARC UV lamp. The results have shown that these liquid-crystalline polythiophene films exhibit a quite fast photochemical phase transition speed and a better opticalswitching property. Furthermore, the existence of the azobenzene moiety in the side chain has also rendered the polythiophene some interesting optical properties that can be modulated by UV light irradiation, e.g., the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease upon UV irradiation and the effect becomes more prominent when shorter spacers are used in between the azobenzene group and the main chain.  相似文献   

16.
In this study, macroinitiators with different content of atom‐transfer radical polymerization (ATRP) functional group on polythiophene backbone were first prepared by the copolymerization of 3‐[1‐ethyl‐2‐(2‐bromopropionate)]thiophene and 3‐hexylthiophene with various feed ratio. Then poly [3‐hexyl‐2,5‐thienylene‐co‐3‐[1‐ ethyl‐2‐(2‐[poly(styrene)]propionate)]‐2,5‐thienylene] (PTTBr‐PS) with different graft density were obtained by ATRP of styrene from these macroinitiators in anisole. The degree of polymerization of PS sidearm (DPPS) was controlled by polymerization time. The structures of obtained graft copolymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). Introduction of the PS sidearms onto the backbone of polythiophene was an attempt to trap the polythiophene backbone in a “solution‐like” conformation, thus inhibit the packing of polythiophene backbone and result in the improvement of fluorescent property in solid state. This was verified by the UV–vis and fluorescence analyses. Besides, it was also found that the optical property of PTTBr‐PS graft copolymer was dominated by its graft density and independent on the degree of polymerization of its PS sidearm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1003–1013, 2008  相似文献   

17.
The frontal polymerization (FP) of bisphenol A ethoxylate diacrylate (BPAEDA) was carried with and without the presence of two different azobenzene comonomers by means of an external heating source. The first azomonomer (MDR‐1) is a derivative of disperse red‐1, N‐ethyl‐N‐(2‐hydroxyethyl)‐4‐(4‐nitrophenylazo)aniline, whereas the second (E)‐2‐(4‐((4‐nitrophenyl)diazenyl)phenyl)‐5,8,11‐trioxa‐2‐azatridecan‐13‐yl methacrylate (4PEGMAN) comes from the azo‐dye N‐methyl‐N‐{4‐[(E)‐(4‐nitrophenyl)diazenyl]phenyl}‐N‐(11‐hydroxy‐3,6,9‐trioxaundecas‐1‐yl) amine. In this work, an ionic liquid trihexyltetradecylphosphonium persulfate was used as initiator. This compound produced stable propagating polymerization fronts with good velocities and moderate maximum temperature values. Moreover, this initiator prevented bubble formation and was found to be the most efficient when it was used in lower amounts with respect to other initiators, such as benzoyl peroxide, 2,2′‐azobisisobutyronitrile, aliquat persulfate®, and tetrabutylphosphonium persulfate. The thermal properties of the obtained polymers and copolymers were determined by thermogravimetric analysis and differential scanning calorimetry. The nonlinear optical (NLO) characterizations of the developed BPAEDA/MDR‐1 and BPAEDA/4PEGMAN copolymers were performed according to the Z‐Scan technique in film samples prepared by classical polymerization. It has been proven that samples with higher 4PEGMAN content (0.26 mol %) exhibited outstanding cubic NLO‐activity with positive NLO‐refractive coefficients in the promising range of n2 = +3.2 × 10?4 esu. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
2‐Bromopropionic acid 2‐(4‐phenylazophenyl)ethyl ester, 2‐bromopropionic acid 6‐(4‐phenylazophenoxy)hexyl ester (BPA6), 2‐bromopropionic acid‐(4‐phenylazoanilide), and 2‐bromopropionic acid 4‐[4‐(2‐bromopropionyloxy)phenylazo]phenyl ester (BPPE) were used as initiators with monofunctional or difunctional azobenzene for the heterogeneous atom transfer radical polymerization of methyl methacrylate with a copper(I) chloride/N,N,N,N,N″‐pentamethyldiethylenetriamine catalytic system. The rates of polymerizations exhibited first‐order kinetics with respect to the monomer, and a linear increase in the number‐average molecular weight with increasing monomer conversion was observed for these initiation systems. The polydispersity indices of the polymer were relatively low (1.15–1.44) up to high conversions in all cases. The fastest rate of polymerization and the highest initiation efficiency were achieved with BPA6, and this could be explained by the longer distance between the halogen and azobenzene groups and the better solubility of the BPA6 initiator. The redshifting of the UV absorptions of the polymers only occurred for the BPPE‐initiated system. The intensity of the UV absorptions of the polymers were weaker than those of the corresponding initiators in chloroform and decreased with the increasing molecular weights of the polymers in all cases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2358–2367, 2005  相似文献   

19.
H-type amphiphilic liquid crystalline block copolymers containing azobenzene were synthesized by atom transfer radical polymerization (ATRP). Macroinitiators prepared by the esterification between poly(ethylene oxide) (PEG) and 2,2-dichloroacetyl chloride were utilized to initiate the polymerization of 6-[4-(4-ethoxyphenylazo)phenoxy]hexyl rnethacrylate (M6C). The resulting macroinitiators and block copolymers were characterized by ^1H NMR, gel permeation chromatography (GPC). Polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) preliminarily revealed the liquid crystalline property of these block copolymers. This series of liquid crystalline block copolymers are promising in some areas, such as optical data storage, optical switch, and molecular devices.  相似文献   

20.
We synthesized a novel photoresponsive monomer, silicon‐containing azo monomer with paired mesogens in the side chain, by reacting 3‐methacryloxypropylmethyldichlorosilane with 2‐[2‐(4‐cyano‐azobenzene‐4′‐oxy)ethylene‐oxy]ethyl alcohol, a mesogenic group. Corresponding homopolymer and copolymers with methyl methacrylate were generated via radical polymerization with AIBN as a radical initiator. Investigations of their thermal properties and optical textures confirmed the monomer and the homopolymer have smectic structures. Homo‐ and copolymer films showed high potential as reversible data recording media via photoinduced alignment of azobenzene groups with irradiation of a linearly or circularly polarized light. Out of all the samples, the copolymer films with high azo dye contents showed the best resolution in the recorded data as well as the fastest response to a pump beam due to large optical birefringence induced in a write‐in process. Strong dependence of the stability of the data stored in the films on the glass transition temperature of the polymers was also observed. In addition, high‐quality holographic grating patterns were inscribed even on the copolymer film with azo molar content of only 7.0% using a modified two‐wave mixing technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6734–6745, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号