共查询到20条相似文献,搜索用时 11 毫秒
1.
Xiaoming Xu Long Ling Xingzhe Ding John O. Burgess 《Journal of polymer science. Part A, Polymer chemistry》2004,42(4):985-998
A novel, fluoride‐releasing dimethacrylate monomer containing zirconium fluoride chelate for use in dental composites was synthesized by an efficient four‐step procedure starting from 4,4‐bis‐(4‐hydroxyphenyl)‐pentanoic acid and was characterized by electrospray mass spectrometry, Fourier transform infrared (FTIR), and 1H and 13C NMR spectroscopies. The synthesized monomer was photopolymerized with camphorquinone and 1‐phenyl‐1,2‐propane‐dione as initiators and N,N‐dimethylaminoethyl methacrylate as an accelerator. The photopolymerization process was investigated by FTIR spectroscopy. The experimental composite containing 13.7 wt % of the synthesized monomer was tested for fluoride release, fluoride recharge, compressive strength, and flexure strength, each in comparison to three commercial flowable dental composites. The results showed that the experimental composite had significantly higher fluoride release and fluoride recharge capabilities than the commercial flowable composites. The flexure strength was comparable to the commercial materials. The water sorption and solubility met the requirements of the International Organization for Standardization 4049 and the American National Standards Institute/American Dental Association Specification Number 27. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 985–998, 2004 相似文献
2.
Thomas Pautzsch Elisabeth Klemm 《Journal of polymer science. Part A, Polymer chemistry》2004,42(12):2911-2919
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004 相似文献
3.
Yasuyuki Irie Kensuke Naka 《Journal of polymer science. Part A, Polymer chemistry》2013,51(12):2695-2701
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701 相似文献
4.
Miklós Nagy Miklós Zsuga Dávid Rácz Sándor Kéki 《Journal of polymer science. Part A, Polymer chemistry》2010,48(12):2709-2715
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010 相似文献
5.
Alaa S. Abd‐El‐Aziz Rawda M. Okasha Leslie J. May Jeff Hurd 《Journal of polymer science. Part A, Polymer chemistry》2006,44(9):3053-3070
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006 相似文献
6.
Kai Wing Cheng Chris S. C. Mak Wai Kin Chan Alan Man Ching Ng Aleksandra B. Djurišić 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1305-1317
Two conjugated polymers based on poly(phenylenethiophene) and poly (fluorenethiophene) main chain functionalized with pendant trithiocyanato ruthenium terpyridine complexes were synthesized by the Suzuki coupling reaction. The ruthenium complexes can extend the absorption band to longer wavelength and enhance the photosensitivity in this region. The polymers exhibit very broad absorption band spanning from 400 to 750 nm due to the presence of π‐conjugated system and the ruthenium complexes. Such enhancement in optical absorption enables the utilization of solar light in the near IR region. By space charge limited current modeling, the hole carrier mobilities of the polymers were calculated to be in the order of 10?4 cm2 V?1 s?1, which greatly facilitate the transport of charges after the separation of excitons. Heterojunction photovoltaic cells with simple structure ITO/polymer/C60/Al were fabricated. Under simulated AM1.5 solar light illumination, the short circuit currents, open circuit voltages, and power conversion efficiencies of the photovoltaic cells were measured to be 1.53–2.58 mA cm?2, 0.12–0.24 V, and 0.084–0.12%, respectively. Deposition of PEDOT:PSS on ITO surface did not show significant difference in device performance. Plot of incident photon to charge efficiency as the function of wavelength suggests that absorption by both conjugated main chain and ruthenium complex are essential to the photocurrent generation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1305–1317, 2008 相似文献
7.
New Schiff bases of 2,4‐dihydroxybenzaldehyde with siloxane‐α,ω‐diamines having different numbers of siloxane units in the chain have been synthesized and characterized by spectroscopy, elemental and thermal analyses. These azomethines were found to form complexes readily with copper(II), nickel(II), cobalt(II), cadmium(II) and zinc(II). From IR and UV–Vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. Thermogravimetric analysis (TGA) data indicate the chelates to be more stable than the corresponding ligands. The melting points increase with shortening of the siloxane segment from azomethine, as well as the result of complexation. The chelates obtained were covalently inserted in polymeric linear structures by polycondensation through the OH‐difunctionalized ligand with 1,3‐bis(carboxypropyl)tetramethyldisiloxane. Direct polycondensation, assisted either by acetic anhydride or N,N′‐dicyclohexylcarbodiimide as dehydrating agent and the complex 4‐(dimethylamino)pyridinium 4‐toluenesulfonate as catalyst, was used for the synthesis of these compound types. The structures of the polymers obtained were confirmed by IR, UV and 1H NMR. Characterization was undertaken by TGA, solubility tests and viscosity measurements. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
8.
Yongfei Li Haiyang Gao Qing Wu 《Journal of polymer science. Part A, Polymer chemistry》2008,46(1):93-101
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008 相似文献
9.
Both 1:1 and 1:2 complexes are formed by zinc(II) halides and triarylphosphines unless electronic and/or steric factors intervene. Tri‐p‐chlorophosphine (a weaker base than PPh3) forms only a 1:1 complex, whereas bulky tri‐(ortho‐substituted phenyl)phosphines do not react. The complexes ZnX2PR3 and ZnX2(PR3)2 have been characterized by elemental analyses, conductance, far‐IR and (in a few cases) Raman spectral studies. The Zn–X and Zn–P stretching and Zn–X bending vibrational frequencies have been assigned in the complexes with a pseudo‐tetrahedral structure of C2v symmetry. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
Beom Soo Kim Jeffrey S. Hrkach Robert Langer 《Journal of polymer science. Part A, Polymer chemistry》2000,38(8):1277-1282
New degradable poly(ether‐anhydride) networks were synthesized by UV photopolymerization. Dicarboxylated poly(ethylene glycol) (PEG) or poly(tetramethylene glycol) (PTMG) was reacted with an excess of methacrylic anhydride to form dimethacrylated macromers containing anhydride linkages. The percent of conversion for the macromer formation was more than 80% at 60 °C after 24 h. 1H NMR and IR spectroscopies show the presence of anhydride linkages in the macromer. In vitro degradation studies were carried out at 37 °C in PBS with crosslinked polymer networks formed by UV irradiation. All PEG‐based polymers degraded within 2 days, while PTMG‐based polymers degraded by 50% of the initial weight after 14 days. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1277–1282, 2000 相似文献
11.
Shape‐memory polyester‐polyethylene oxide networks are synthesized through photopolymerization of hydrophobic poly[(D,L‐lactide)‐co‐glycolide]tetraacrylate (PLGATA) and hydrophilic poly(ethylene glycol) dimethacrylate (PEGDMA). The materials can recover their original shape either quickly by heating stimulus or slowly upon immersion in water. The wettability, mechanical properties, and transition temperature of the polymer networks could be conveniently adjusted by variation of the compositions of PLGATA and PEGDMA. The hydrophilicity of PEGDMA could prospectively improve blood compatibility of polymer networks. They offer a high potential for biomedical applications such as smart implants, drug delivery systems, or medical devices. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
Seven new μ‐oxamido copper(II)‐lanthanide(III) heterobimetalic complexes described by the formula Cu(obbz) Ln‐(Ph‐phen)2NO3(Ln = La, Nd, Eu, Gd, Tb, Ho, Er), where obbz denotes the oxamidobis(benzoato) and Ph‐phen represents 5‐phenyl‐1, 10‐phenanthroline, have been synthesized and characterized by the elemental analyses, spectroscopic (IR, UV, ESR) studies, magnetic moments (at room temperature) and molar conductivity measurement. The temperature dependence of the magnetic susceptibility of Cu(obbz)Gd(Ph‐phen)2NO3 complex has been measured over the range 4.2–300 K. The least‐squares fit of the experimental susceptibilities based on the spin Hamiltonian operator, ? = ?2 J?1·?2, yielded J= +1.28 cm?1, a weak ferromagnetic coupling, A plausible mechanism for a ferromagnetic coupling between Gd(III)‐Cu(II) is discussed in terms of spin‐polarization. 相似文献
13.
Fernanda B. Leal Claudio M. Pereira Fabrício A. Ogliari 《Journal of polymer science. Part A, Polymer chemistry》2015,53(14):1728-1733
The aim of this study was to synthesize, characterize, and evaluate alternative monomers for use in dentistry. Three siloxane‐oxirane low‐shrinkage monomers were synthesized, and the products’ conversion was followed by Fourier transform ‐ infrared spectroscopy. The products obtained were characterized by 1H and 13C NMR and evaluated for viscosity and a refractive index. The polymerization was evaluated by formulating two experimental photoinitiation systems, which varied for the presence of 1,2 ethanediol. A ternary system with camphorquinone (CQ), ethyl 4‐dimethylaminobenzoate (EDAB), and diphenyliodonium hexafluorphosphate (DPI) was used as control. The degree of conversion was assessed by differential scanning calorimetry (DSC). The NMR confirmed the synthesis success with 75, 87, and 55% yields for the monomers synthesized. The viscosity and the refractive index of the monomers showed favorable rheological and physical behaviors for application in dentistry. Moreover, the presence of 1,2 ‐ ethanediol increased the degree of conversion of the siloxane‐oxirane monomers. This study showed a simple and effective way to synthesize siloxane‐oxirane monomers with a high potential for application in dental materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1728–1733 相似文献
14.
Jorge Jimenez Indranil Chakraborty Pradip Mascharak 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(11):965-968
Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal–carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans‐dicarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κ2N,N′)ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac‐tricarbonyldichlorido(4,5‐diazafluoren‐9‐one‐κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans‐directing effect of the CO ligands allows bidentate coordination of the 4,5‐diazafluoren‐9‐one (dafo) ligand despite a larger bite distance between the N‐donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined 1H NMR spectra confirming the diamagnetic ground state of RuII and display a strong absorption band around 300 nm in the UV. 相似文献
15.
New ligands were obtained by the reaction of 1,3‐bis(3‐aminopropyl)tetramethyldisiloxane, with acetylacetone, 2,4‐dihydroxybenzophenone and 2,4‐dihydroxyacetophenone. The structures were confirmed by electronic, IR and 1H NMR spectroscopy and elemental analysis. The change of the refractive index of the siloxanes by their chemical modification was also examined. These compounds were used for coordination of some divalent metals. The ligands and their metal complexes were both soluble in common solvents, such as CHCl3, dimethylformamide, dimethylsulfoxide, N‐methyl‐2‐pyrrolidone. Some of the bifunctional chelates were inserted into polymeric structures by polycondensation with the diacid chloride of bis(p‐carboxyphenyl)diphenylsilane. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
16.
Ahmed M. Mansour 《应用有机金属化学》2018,32(1)
[MCl(H2L)(OH2)]·1.5H2O (M = Pd(II) ( 1 ) and Pt(II) ( 2 )) and [Ru(H2L)2(OH2)2]·3H2O ( 3 ) (H3L: N‐phenyl, N`‐(3‐triazolyl)thiourea) were synthesized, characterized and tested for their antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The thiourea derivative is coordinated to Mn+ ions as a mono‐negatively N,S‐bidentate ligand via the enolization of C = S group and triazole N center. The density functional theory calculations reveal that presence of a water molecule in a trans position to triazole ring increased the stability of d8 metal ions complexes via the formation of strong Cl…NH intramolecular H‐bond. The cis‐Ru(II)‐isomer with two isoenergetically H2L? molecules are more stable than the trans‐analog. Coordination of H3L to Ru(II) ion did not alter the toxicity of the free ligand, while the interaction with the d8 metal ions gave rise to inactive compounds. 相似文献
17.
O. G. Marambio G. del C. Pizarro M. Jeria‐Orell M. Huerta Claudio Olea‐Azar W. D. Habicher 《Journal of polymer science. Part A, Polymer chemistry》2005,43(20):4933-4941
The free‐radical copolymerization of N‐phenylmaleimide (N‐PhMI) with acrylic acid was studied in the range of 25–75 mol % in the feed. The interactions of these copolymers with Cu(II) and Co(II) ions were investigated as a function of the pH and copolymer composition by the use of the ultrafiltration technique. The maximum retention capacity of the copolymers for Co(II) and Cu(II) ions varied from 200 to 250 mg/g and from 210 to 300 mg/g, respectively. The copolymers and polymer–metal complexes of divalent transition‐metal ions were characterized by elemental analysis, Fourier transform infrared, 1H NMR spectroscopy, and cyclic voltammetry. The thermal behavior was investigated with differential scanning calorimetry (DSC) and thermogravimetry (TG). The TG and DSC measurements showed an increase in the glass‐transition temperature (Tg) and the thermal stability with an increase in the N‐PhMI concentration in the copolymers. Tg of poly(N‐PhMI‐co‐AA) with copolymer composition 46.5:53.5 mol % was found at 251 °C, and it decreased when the complexes of Co(II) and Cu(II) at pHs 3–7 were formed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4933–4941, 2005 相似文献
18.
Fu‐Sheng Du Zi‐Chen Li Wei Hong Qing‐Yu Gao Fu‐Mian Li 《Journal of polymer science. Part A, Polymer chemistry》2000,38(4):679-688
Three carbazole‐containing methacrylic monomers, 2‐(N‐carbazolyl)ethyl methacrylate(CzEMA), 6‐(N‐carbazolyl)hexyl methacrylate(CzHMA), and 11‐(N‐carbazolyl)undecyl methacrylate (CzUMA), and their saturated model compounds, 2‐(N‐carbazolyl)ethyl isobutyrate, 6‐(N‐carbazolyl)hexyl isobutyrate, and 11‐(N‐carbazolyl)undecyl isobutyrate, were synthesized and polymerized. UV absorption spectra showed that there was either negligible or no interaction between the carbon–carbon double bond of the methacrylic group and the carbazolyl chromophore moiety in the ground state for these monomers. Fluorescence spectra of the monomers, their model compounds, and the polymers were recorded in the solvents with different polarities. CzEMA exhibited the fluorescence structural self‐quenching effect (SSQE), but CzHMA and CzUMA did not. In addition, the SSQE of CzEMA depended strongly on the polarity of the solvents. That is, the stronger the polarity of a solvent was, the more obvious the SSQE was. Therefore, the SSQE of CzEMA mainly was caused by the intramolecular charge‐transfer interaction between the excited electron‐donating carbazolyl chromophore moiety and the electron‐accepting carbon–carbon double bond of the methacrylic group. This was confirmed by the fluorescence‐decay curves and the fluorescence lifetimes of the monomers, their model compounds, and the polymers. The monomers, their model compounds, and the polymers initiated the photopolymerization of methyl methacrylate (MMA) upon UV irradiation. CzEMA showed greater initiation ability than the other two monomers and their model compounds; this was ascribed to the photoinduced intramolecular charge‐transfer interaction. The higher initiation efficiency of the homopolymers compared to that of the copolymers with MMA was interpreted as the result of singlet energy migration of the excited carbazolyl chromophores along the polymer chains. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 679–688, 2000 相似文献
19.
Maria Cazacu Mihai Marcu Angelica Vlad Andrs Tth Carmen Racles 《Journal of polymer science. Part A, Polymer chemistry》2003,41(20):3169-3179
Novel polymeric azomethines of 5,5′‐methylene‐bissalicylaldehyde with two siloxane diamines {H2N(CH2)3(CH3)2SiO[(CH3)2SiO]mSi(CH3)2(CH2)3NH2, where m = 0 or 6.5} were obtained. Their structures were confirmed by elemental and spectral [IR, ultraviolet–visible (UV–vis), and 1H NMR] analysis. The obtained polyazomethines were converted into the chelates of some divalent metals (copper, cobalt, and nickel). The resulting complexes were characterized by electronic and IR spectral measurements, elemental analysis, and thermal studies. From IR and UV–vis studies, the phenolic oxygen and imine nitrogen of the ligand were found to be the coordination sites. The thermogravimetric data indicated that the chelates were less stable than the corresponding ligands and that the thermostability depended on the siloxane segment length and the nature of the metal. Both the macromolecular ligands and the parts of the resultant chelates were soluble in common organic solvents, such as CHCl3, CH2Cl2, dimethylformamide, and dimethyl sulfoxide. The surface compositions of the ligands and some chelates were examined by X‐ray photoelectron spectroscopy. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3169–3179, 2003 相似文献
20.
Havva Yagci Cher Ostrowski Lon J. Mathias 《Journal of polymer science. Part A, Polymer chemistry》1999,37(8):1189-1197
A novel diamine, 4,4‐bis(p‐aminophenoxymethyl)‐1‐cyclohexene (CHEDA), was synthesized from 4,4‐bis(hydroxymethyl)‐1‐cyclohexene and p‐chloronitrobenzene by nucleophilic aromatic substitution and subsequent catalytic reduction of the intermediate dinitro compound. A series of aromatic polyimides were prepared from CHEDA and commercial dianhydrides with varying flexibility and electronic character in two‐step direct polycondensation reactions. High molecular weight polyimides with intrinsic viscosities between 0.57 and 10.2 dL/g were obtained. Most of these polyimides, excluding those from PMDA and BPDA, were soluble in polar aprotic solvents such as NMP and DMAc, and many were also soluble in CHCl3 and THF. DSC analysis revealed glass transitions in the range of 190 to 250°C. No significant weight losses occurred below 450°C in nitrogen and 350°C in air. Bromination and epoxidation of cyclohexene double bond in CHDEA–6FDA (3e) were investigated as examples of possible polymer modifications. Qualitative epoxidation and selective bromination of the double bond were demonstated. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1189–1197, 1999 相似文献