首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This article describes the results of experiments examining the competition between the polymer diffusion rate and the crosslinking rate in low‐glass‐transition‐temperature, epoxy‐containing latex films in the presence of a diamine. We examined films formed from donor‐ and acceptor‐labeled poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate) copolymer latex and studied the influence of several parameters on the growth rate of gel content and the rate of polymer diffusion. These factors include the molecular weight of the latex polymer, the presence or absence of a diamine crosslinking agent, and the cure protocol. The results were compared to the predictions of a recent theory of the competition between crosslinking and polymer diffusion across interfaces. In the initially formed films, polymer diffusion occurs more rapidly than the chemical reaction rate. Therefore, these films fall into the fast‐diffusion category of this model. In our system (unlike in the model), the latex polymer has a broad distribution of molecular weights and a distribution of diffusivities. The shortest chains contribute to the early time diffusion that we measure. At later stages of our experiment, slower diffusing species contribute to the signal that we measure. The diffusion time decreases substantially, and we observe a crossover to a regime in which the chemical reaction dominates. The increases in chain branching and gel formation bring polymer diffusion to a halt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4098–4116, 2002  相似文献   

2.
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004  相似文献   

3.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

4.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

5.
The dynamic heat capacity and glass‐transition temperature of polystyrene (PS)/poly(vinyl acetate‐co‐butyl acrylate) (VAc–BA) (50:50 w/w) structured latex films as a function of annealing time at 70, 77, and 85 °C were examined with modulated‐temperature differential scanning calorimetry. The PS and poly(vinyl acetate‐con‐butyl acrylate) components were considered to be the cores and shells, respectively, in the structured latex. The dynamic heat capacity decreased with time. The glass‐transition temperatures of the PS and VAc–BA phases shifted to higher values after annealing. The results of thermogravimetry showed that there existed about 1.8% residual water in the films. The mean free volume and relative concentration of holes at room temperature (before and after annealing) and 85 °C, as a function of time, were obtained with positron annihilation lifetime spectroscopy (PALS). The PALS results indicated no significant change in free volume during annealing. It is believed that the loss, by diffusion, of residual water mainly caused a decrease in heat capacity and an increase in the glass‐transition temperatures. As little as 1.8% residual water in the structured latex films had a significant influence on the thermal properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1659–1664, 2001  相似文献   

6.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

7.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
In this work, the poly(methyl methacrylate‐co‐methacrylic acid)/poly(methacrylic acid‐co‐N‐isopropylacrylamide) thermosensitive composite semi‐hollow latex particles was synthesized by three processes. The first process was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly (MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second process was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and crosslinking agent, N,N′‐methylenebisacrylamide, in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐co‐N‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles with solid structure. In the third process, part of the linear poly(MMA‐MAA) core of core–shell latex particles was dissolved by ammonia to form the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles. The morphologies of the semi‐hollow latex particles show that there is a hollow zone between the linear poly(MMA‐MAA) core and the crosslinked poly(MAA‐NIPAAm) shell. The crosslinking agent and shell composition significantly influenced the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) semi‐hollow latex particles. Besides, the poly(MMA‐MAA)/poly(MAA‐NIPAAm) thermosensitive semi‐hollow latex particles were used as carriers to load with the model drug, caffeine. The processes of caffeine loaded into the semi‐hollow latex particles appeared four situations, which was different from that of solid latex particles. In addition, the phenomenon of caffeine released from the semi‐hollow latex particles was obviously different from that of solid latex particles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3441–3451  相似文献   

9.
A series of SiO2/poly(styrene‐co‐butyl acrylate) nanocomposite microspheres with various morphologies (e.g., multicore–shell, normal core–shell, and raspberry‐like) were synthesized via miniemulsion polymerization. The results showed that the morphology of the composite latex particles was strongly influenced by the presence or absence of the soft monomer (butyl acrylate), the particle sizes of the silica, and the emulsifier concentrations. The incorporation of the soft monomer helped in forming the multicore–shell structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3202–3209, 2006  相似文献   

10.
Films of poly(L ‐lactide‐co‐D ‐lactide) [P(LLA‐DLA); 95/5] and poly(L ‐lactide) [i.e., poly(L ‐lactide acid) (PLLA)] were prepared by crystallization from the melt, and a comparative study of the crystallization effects on the alkaline and proteinase K catalyzed hydrolysis of the films was carried out. The hydrolyzed films were investigated with gravimetry, differential scanning calorimetry, polarimetry, and gel permeation chromatography, and the results were compared with those reported for amorphous‐made specimens. The alkaline hydrolyzability of the P(LLA‐DLA) (95/5) and PLLA films was determined solely by the initial crystallinity (Xc) and was not affected by the content of the incorporated D ‐lactide (DLA) unit in the polymer chain; this was in marked contrast to the fact that the enzymatic hydrolyzability depended on not only the initial Xc value but also the DLA unit content. The alkaline hydrolysis rate of the P(LLA‐DLA) (95/5) and PLLA films and the enzymatic hydrolysis rate (REH) of the P(LLA‐DLA) (95/5) films decreased linearly as the initial Xc value increased. This meant that the hydrolyzability of the restricted amorphous regions was very similar to that of the free amorphous regions. In contrast, REH of the PLLA films decreased nonlinearly with the initial Xc value, and this nonlinear dependence was caused by the fact that in the PLLA films the restricted amorphous regions were much more hydrolysis‐resistant than the free amorphous regions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1064‐1075, 2005  相似文献   

11.
Functional polymer/AgNPs nanocomposites have been prepared. Silver nanoparticles (NPs) were synthesized to which polyacrylamide, PAAm, was covalently bound. PAAm was synthesized via a RAFT reaction and carried thiol and carboxylic acid end groups. Thiol was used to bind the polymer to the metal surface and carboxyl for further reactions. The AgNPs were used in a post‐crosslinking reaction with a separately synthesized poly(butyl acrylate‐co‐methyl methacrylate)/polyglycidyl methacrylate core/shell latex bearing epoxy functional groups. Dynamic mechanical analysis showed that the functional AgNPs effectively crosslinked the latex polymer, and that the final product had excellent mechanical strength. Antibacterial tests revealed that the nanocomposite films had strong antibacterial activity against all types of the bacteria and the immobilization of silver NPs by crosslinking retarded the release of silver in comparison to the uncrosslinked ones. With the presented method, it is possible to obtain ductile antibacterial nanocomposites to be used as waterborne functional coatings. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1435–1447  相似文献   

12.
Polystyrene‐block‐poly(butyl acrylate) and polystyrene‐block‐poly[(butyl acrylate)‐co‐styrene] block copolymers were prepared in an aqueous dispersed system via controlled free‐radical miniemulsion polymerization using degenerative iodine transfer. The first step is batch miniemulsion polymerization of styrene in the presence of C6F13I as transfer agent. The second step consists of the addition of butyl acrylate to this seed latex, either in one shot or continuously. The addition was started before the consumption of styrene was complete in order to perform a copolymerization reaction able to moderate the rate of propagation in the butyl acrylate polymerization step and, therefore, to favor the transfer reaction. Kinetics of polymerization and control of the molar masses were examined according to the experimental conditions and particularly to the rate of butyl acrylate addition. The formed block copolymers were analyzed by size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR).  相似文献   

13.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

14.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

15.
Polymethyl(alkoxy)siloxane copolymers, poly(MTES‐co‐TEOS), and poly(MTMS‐co‐TMOS), are prepared by acid‐catalyzed controlled hydrolytic co‐polycondensation of methyl(trialkoxy)silane MeSi(OR)3 (R = Et (MTES) and Me (MTMS)) and tetra‐alkoxysilane Si(OR)4 (R = Et (TEOS) and Me (TMOS)), respectively. The products are purified by fractional precipitation to provide polymethyl(alkoxy)siloxane copolymers with molecular weight 1000–10,000 (poly(MTES‐co‐TEOS)) or 1700–100,000 (poly(MTMS‐co‐TMOS)) that are stable to self‐condensation. These polymers are soluble in common organic solvents except for hexane, and form flexible and transparent free‐standing films with a tensile strength of 4.0–10.0 MPa. The structure of the polymethyl(alkoxy)siloxane copolymers is thought to be a random or a block co‐polymer. They are found to provide coating films with an adhesive strength up to 10, a refractive index of 1.36–1.40, and a dielectric constant of 3.5–3.6. The products also show better weathering stability than polyethoxysiloxane due to the hydrolytic polycondensation of TEOS. Field emission‐scanning electron micrography analysis reveals that coating films are composed of a micro‐phase separated structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4732–4741  相似文献   

16.
The synthesis of new polymer colloids based on renewable resources, such as sugar‐derived monomers, is nowadays a matter of interest. These new polymeric particles should be useful in biomedical applications, such as drug delivery, because of their assumed biodegradability. In this work, two new families of polymer latex particles, based on a sugar‐derived monomer, 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were produced and characterized. The syntheses of poly(3‐MDG) crosslinked particles and those obtained by copolymerization with methacrylic acid (MAA), poly(3‐MDG‐co‐MAA) crosslinked particles, were prepared by surfactant‐free emulsion polymerization in a batch reactor. The average particle diameter evolutions, the effect of pH of the dispersion medium on the final average diameters, together with the microscopic and morphological analysis of the particle's surface and inner dominium, were analyzed. Poly(3‐MDG‐co‐EGDMA) stable particles were obtained by adding low amounts of initiator. The surface‐charge density of these particles corresponded to the sulfate groups coming from the initiator. In the second family of latices, poly(3‐MDG‐co‐MAA‐co‐EGDMA) particles, DCP measurements and SEM and TEM observations showed that the sizes and surface characteristics depended on the amounts of MAA and crosslinker used in the reaction mixture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 443–457, 2006  相似文献   

17.
Novel semi‐interpenetrating polymer networks (SIPNs) based on segmented polyurethane‐urea and poly(N‐isopropylacrylamide‐co‐acrylic acid‐co‐butylmethacrylate) (poly(NIPAM‐co‐AA‐BMA)) were synthesized for the fabrication of silver nanoparticles (AgNPs) in the SIPN system that could be useful for wound dressing applications. The obtained SIPN films, after neutralization, showed high swelling in aqueous environments and good mechanical properties in both dry and hydrated states. Analysis of the dried SIPN films by differential scanning calorimetry and dynamic viscoelastic measurements revealed the presence of crosslinked copolymers as well as homopolymers in the SIPN system. The neutralized swollen SIPN film coordinated with the silver ions (Ag+) that were incorporated into it. AgNPs were subsequently formed by the reduction of Ag+. The formation of AgNPs was characterized by UV‐visible spectroscopy, atomic force microscopy, wide‐angle X‐ray diffraction, and thermogravimetric analysis (TGA). Bactericidal activity tests revealed a distinct zone of microbial inhibition within and around the silver‐doped SIPN films. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4950–4962, 2009  相似文献   

18.
Well‐defined end‐functionalized polystyrene, poly(α‐methylstyrene), and polyisoprene with polymerizable aziridine groups were synthesized by the termination reactions of the anionic living polymers of styrene, α‐methylstyrene, and isoprene with 1‐[2‐(4‐chlorobutoxy)ethyl]aziridine in tetrahydrofuran at ?78 °C. The resulting polymers possessed the predicted molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.1) as well as aziridine terminal moieties. The cationic ring‐opening polymerization of the ω‐monofunctionalized polystyrene having an aziridinyl group with Et3OBF4 gave the polymacromonomer, whereas the α,ω‐difunctional polystyrene underwent crosslinking reactions to afford an insoluble gel. Crosslinking products were similarly obtained by the reaction of the α,ω‐diaziridinyl polystyrene with poly(acrylic acid)‐co‐poly(butyl acrylate). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4126–4135, 2005  相似文献   

19.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

20.
A poly(p‐phenylene) (PP), carrying perfectly alternating, well‐defined poly(perfluorooctylethyl acrylate‐co‐methyl methacrylate) [P(FEA‐co‐MMA)] and polystyrene (PS) side chain grafts, was synthesized by the combination of atom transfer radical polymerization (ATRP) and Suzuki cross‐coupling processes. First, dibromobenzene and diboronic ester functional macromonomers of P(FEA‐co‐MMA) and PS, respectively, were prepared by ATRP. In the second step, PP with lateral alternating P(FEA‐co‐MMA) and PS chains was synthesized by a Suzuki coupling reaction in the presence of Pd(PPh3)4 catalyst. The wetting behavior of the polymers was studied by measurements of the static contact angle θ of thin films (200?400 nm thickness) using water and n‐hexadecane as wetting liquids. The obtained fluorinated PP showed high static contact angles with both interrogating liquids, exhibiting simultaneously hydrophobic (θw = 111°) and lipophobic (θh = 67°) properties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号