首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe the synthesis and characterization of a series of poly(vinyl acetate‐co‐dibutyl maleate) [P(VAc‐DBM)] latex particles (monomer molar ratio 10.6:1). One set of samples [high‐M and M250k SDS‐P(VAc‐DBM), gel content 50% and 0%] was prepared in the presence of an anionic surfactant sodium dodecyl sulfate. The other two sets of samples [high‐M and M250k PVOH–P(VAc‐DBM)] were prepared in the presence of poly(vinyl alcohol) (PVOH). These polymers differ in gel content (50 and 0%) and the extent of PVOH grafting (30 and 15%). Polymer diffusion across cell boundaries in the latex films was monitored by fluorescence resonant energy transfer (ET) experiments. First, we examined M250k samples in the presence of grafted and post‐added PVOH. The presence of post‐added PVOH (5%) causes a small but detectable retardation on the rate of polymer diffusion, whereas the presence of grafted PVOH (degree of grafting: 15%) significantly promotes the polymer diffusion rate. For the high‐M P(VAc‐DBM), the presence of post‐added PVOH also retards the polymer diffusion. Strikingly, the presence of grafted PVOH (degree of grafting: 30%) in the high‐M PVOH‐P(VAc‐DBM) promotes the polymer diffusion to such an extent that the diffusion was complete in the freshly prepared films. Our data also suggest that under our experimental conditions, the rate of P(VAc‐DBM) diffusion increases with an increase of the degree of PVOH grafting. To confirm these results, we carried out fluorescence microscopy experiments to monitor the fate of PVOH in these latex films and found that in newly formed PVOH–P(VAc‐DBM) films, the PVOH was either uniformly distributed in the P(VAc‐DBM) matrix or the domains were too small to be resolved (i.e., < 0.5 μm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5005–5020, 2004  相似文献   

3.
We describe the synthesis and characterization of three new polymerizable benzophenone derivatives [2‐acryloxy‐5‐methyl benzophenone ( 8 ), 4′‐dimethylamino‐2‐acryloxy‐5‐methyl benzophenone ( 9 ), and 4′‐dimethylamino‐2‐(β‐acryloxyethyl)oxy‐5‐methyl benzophenone ( 10 )]. We show that these monomers can successfully be incorporated into vinyl acetate (VAc) copolymer latex particles. These particles were prepared by semicontinuous emulsion polymerization and mini‐emulsion polymerization of VAc with butylacrylate (BA) for VAc/BA = 4/1 by weight. The two monomers 9 and 10 bearing the 4′‐dimethylamino group satisfy the important spectroscopic criteria required of a dye to serve as an acceptor chromophore for nonradiative energy transfer from phenanthrene (Phe) as the donor. Their UV absorption spectra suggest significant overlap with the emission spectrum of Phe, which can be incorporated into P(VAc‐co‐BA) latex through copolymerization with 9‐acryloxymethyl Phe ( 2 ). In addition, these chromophores provide a window in their absorption spectra for excitation of the Phe chromophore at 300 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3001–3011, 2002  相似文献   

4.
This article reports the synthesis, characterization, and damping characteristics of semi‐interpenetrating (semi‐IPN) latex systems composed of poly n‐butyl acrylate (PBA) core and poly n‐butyl methacrylate (PBMA) shell. The IPN's were prepared by seeded emulsion polymerization using crosslinked PBA seeds with varying crosslinker (m‐diisopropenyl benzene) concentration. The polymer weight ratio in the first and second stage polymerization is maintained at 1:1 in all the cases. The particle size determined by dynamic light scattering shows a decrease in the shell thickness with increasing crosslinker concentration of the seed. The mechanical properties, like Shore A hardness of the films, increased from 18 to 65 when the crosslinker concentration is increased from 0 to 4.8 mol%. The dynamic mechanical studies show that the modulus value of the IPN's is below that of non‐crosslinked films, and the value depends upon the crosslink density of the seed. Mechanical models, such as the Kerner's model and the Takayanagi's model, were used to explain the variation in the dynamic mechanical properties with the degree of seed crosslinking. The study indicates lower bound (rubbery) behavior for the films with lightly crosslinked cores. The study also shows that, at lower crosslinker concentration enhanced phase separation and better damping properties are achieved but at higher cross linker concentration (>2 mol%) greater interpenetration of the shell monomer to the cores takes place and tough films, with reduced damping properties are formed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The aqueous phase of a poly(butyl methacrylate) (PBMA) latex dispersion contained an oligomeric component that was isolated after sedimentation of the PBMA latex particles. The component contained both water‐soluble PBMA oligomer and some longer chain species that were present as a very fine colloidal dispersion. We describe the isolation and characterization of this component. This component was then added to a purified PBMA latex dispersion from which the aqueous component was previously removed. Latex films were prepared, and in the presence of the oligomeric material, the rate of polymer diffusion in the latex film was strongly enhanced. The magnitude of the enhancement was fit quantitatively to the Fujita–Doolittle equation, indicating that the oligomers acted like a traditional plasticizer to increase the free volume in the system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3933–3943, 2000  相似文献   

6.
This article describes our first experiments for preparing dye‐labeled latex particles by the emulsion copolymerization of a 4/1 (w/w) mixture of vinyl acetate‐butylacrylate (VAc‐BA). We discuss the synthesis of acrylate derivatives of phenanthrene, anthracene, and pyrene [9‐acryloxymethyl phenanthrene ( 7 ), 9‐acryloxymethyl‐10‐methyl anthracene ( 8 ), and 1‐acryloxymethyl pyrene ( 10 )] and an allyl ether derivative of anthracene [9‐allyoxymethyl‐10‐methyl anthracene ( 9 )]. Although the phenanthrene derivative 7 gave latex particles with high monomer conversion and good dye incorporation, the pyrene acrylate and both anthracene comonomers strongly inhibited the free‐radical reaction. To assist our search for a dye that would serve as a useful energy acceptor for phenanthrene and without suppressing VAc‐BA polymerization, we also examined batch emulsion polymerization in the presence of a variety of dye derivatives—substituted anthracenes, acridines, a coumarin, and two benzophenone derivatives. All of the anthracene derivatives, as well as acridine, strongly inhibited monomer polymerization. The coumarin dye 7‐hydroxy‐4‐methyl coumarin ( 22 ) that had only limited solubility allowed more than 90% monomer conversion. Most promising were 2‐hydroxy‐5‐methyl benzophenone ( 23 ) and 4‐N,N‐dimethylamino benzophenone ( 24 ) that at 1 mol % in the monomer mixture permitted virtually quantitative monomer conversion to latex. 4′‐Dimethylamino‐2‐acryloxy‐5‐methyl benzophenone ( 25 ) copolymerized well with the VAc‐BA mixture, yielding latex particles in high yield and with a narrow size distribution. These dyes appear to be useful acceptor dyes for energy‐transfer experiments with phenanthrene. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1594–1607, 2002  相似文献   

7.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   

8.
During the emulsion polymerization of vinyl acetate (VAc) using poly(vinyl alcohol) (PVA) as stabilizer and potassium persulfate as initiator, the VAc reacts with PVA forming PVA-graft-PVAc. When the grafted polymer reaches a critical size it becomes water-insoluble and precipitates from the aqueous phase contributing to the formation of polymer particles. Since particle formation and therefore the properties of the final latex will depend on the degree of grafting, it is important to quantify and to characterize the grafted PVA. In this work, the quantitative separation and characterization of the grafted water-insoluble PVA was carried out by a two-step selective solubilization of the PVAc latex, first with acetonitrile to separate PVAc homopolymer, followed by water to separate the water-soluble PVA from the remaining acetonitrile-insoluble material. After the separation, the water-soluble and water-insoluble PVA were characterized by Fourier Transform Infrared (FTIR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) analyses, from which the details of the PVA-graft-PVAc structure were obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The synthesis of polybutadiene (PB) by emulsion polymerization with use of poly (vinyl pyrrolidone) (PVP) stabilizer was investigated. The goal was to prepare flexible latex films that clearly retain particle morphology in the solid state after heat treatment and contain no ionic, hydroxyl, or (primary, secondary) amino groups. The latex particle core composed of PB was nonpolar and rubbery, while the particle shell composed of PVP was polar and glassy. Average particle diameter was measured by the dynamic light scattering technique, and particles were imaged by scanning and transmission electron microscopic analyses. Dialysis of the latices resulted in successful exchange of the dispersion medium without precipitation. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
We have successfully demonstrated the preparation of poly(n‐butyl acrylate)‐b‐polystyrene particles without any coagulation by two‐step emulsifier‐free, organotellurium‐mediated living radical emulsion polymerization (emulsion TERP) using poly(methacrylic acid) (PMAA)–methyltellanyl (TeMe) (PMAA30‐TeMe) (degree of polymerization of PMAA, 30) and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501). The final particle size was ~30 nm and second particle nucleation was not observed throughout the polymerization. Mn increased linearly in both steps with conversion and blocking efficiency was ~75%. PDI was improved by increasing radical entry frequency into each polymer particle due to an increase of the polymerization temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A systematic study of the terpolymerization of butyl acrylate/methyl methacrylate/vinyl acetate (BA/MMA/VAc) was conducted. In this stage of the study, batch emulsion terpolymerizations were performed in a 5 L stainless steel pilot plant reactor. The experiments were designed using a Bayesian (optimal) technique. The polymers produced were characterized for conversion, composition, molecular weight, and particle size. Conversion, terpolymer composition, number- and weight-average molecular weight, and average particle size results are discussed in light of the influence of seven factors and the interaction of these factors. The factors studied include monomer feed composition, initiator concentration, chain transfer agent concentration, impurity concentration, initiator type, emulsifier concentration, and temperature. A “two-stage rate” phenomenon, similar to that occurring in bulk co- and terpolymerization and emulsion copolymerization of acrylic/vinyl acetate systems was observed in the conversion, composition and molecular weight data. Furthermore, an interesting yet often ignored effect of impurities on emulsion polymerization kinetics was explained. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1659–1672, 1997  相似文献   

12.
The use of small amounts of carboxylic monomers in industrial recipes with high solids content enhances colloidal stability due to the presence of carboxylic groups on the outer surface of the polymer particles. Understanding the relationship between several different but interdependent phenomena, including particle nucleation, kinetics, particle aggregation, monomer type, solids content, the role of the carboxylic monomer and the influence of reaction temperature may improve the control over particle size and latex stability. In this work, the kinetics and stabilization performance of semicontinuous vinyl acetate (VA) and butyl acrylate (BA) emulsion copolymerization reactions are studied under different reaction temperatures, acrylic acid (AA) concentrations, solids contents and monomer feed compositions. Results show that choosing optimal AA concentrations and reaction temperatures are key factors in order to enhance the stabilization performance in semicontinuous VA/BA emulsion copolymerization.  相似文献   

13.
对用(NH4)2S2O8-环己酮NaHSO2加合物新型氧化还原体系引发的醋酸乙烯酯聚合过程进行研究,求得该聚合反应的表观活化能为84.6kJ/mol,并测定了聚合产物的粘均分子量.  相似文献   

14.
15.
A copolymer of poly(vinyl naphthalene) grafted onto poly(vinyl alcohol) has been synthesized with nitroxide‐mediated controlled radical polymerization. By separating the processes of the generation of grafting sites and polymerization, we can avoid the formation of the homopolymer. Because of its architecture, the polymer is soluble in water, despite the high content of hydrophobic groups. The naphthalene chromophores tend to aggregate, forming hydrophobic microdomains in an aqueous solution. Those aggregates exist in a very constrained environment that leads to extraordinarily large redshifts of both the absorption and emission of the polymer. The polymer acts as an efficient photosensitizer in photoinduced electron transfer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2675–2683, 2006  相似文献   

16.
《先进技术聚合物》2018,29(3):1094-1106
The introduction of non‐modified kraft LignoBoost® lignin (KL) to produce polymer hybrid latex has received much attention in recent years because it is derived from renewable resources. The focus of this work is to develop a polymer hybrid latex by emulsion and miniemulsion copolymerization of styrene with n‐butyl acrylate and methacrylic acid in the presence of different concentrations of KL furnished by the pulp and paper industry. The study intends to substitute a styrene in the system to understand the effect of non‐modified KL on the properties not only of the latexes, but also on the copolymers themselves. Each polymerization was carried out by shot‐process of tertbutyl hydroperoxide and sodium formaldehyde sulfoxylate as the redox system. The polymer latexes were characterized in relation to overall conversion, particle diameter, particle morphology, coagulum formation, surface tension, zeta potential, and atomic force microscopy. The polymers were evaluated through gel permeation chromatography, water absorption, and thermal properties. The results show that the addition of non‐modified KL results in inhibition of the polymerization and that KL acts as a colloid stabilizer. Small particles were generated in the initial stages of the polymerizations. The presence of the KL altered the color of the latexes; the increase in KL concentration resulted in increase in the absorption of water of the polymer films; the increase in KL concentration resulted in decrease of the molar mass of the copolymers.  相似文献   

17.
Batch emulsion polymerization was used in order to obtain latexes from a mixture of butyl acrylate (ca. 90% mole), and a hydrophobic crosslinkable functional monomer called N-isobutoxymethyl acrylamide (ca. 10% mole). Films were then cast from these latexes, and their thermomechanical properties were studied before and after a heat treatment intended to provoke crosslinking of the functional groups. The differential thermal analysis and the dynamic mechanical analysis of the film samples proved that the functional monomer copolymerized with butyl acrylate; the dynamic mechanical analysis revealed also that crosslinking took place after the heat treatment. Different kinds of high strain experiments (among which there were stress relaxation tests) were carried out in a tensile testing machine Important differences were thus shown to appear between the “as-dried” and “annealed” samples. In the case of stress relaxation experiments, simple mechanical models were used in order to fit the experimental data, both during the stretching experiment and the stress relaxation following it. The analysis of the high-strain experiments and their simulation led to the conclusion that the films contained high molecular weight polymers having a broad molecular weight distribution, and that their crosslinking enhanced the entropic elastic behavior, even though a viscoelastic, large relaxation time contribution was kept; the hypothesis of its coming from a trapped-entanglement effect was proposed.  相似文献   

18.
19.
The influence of non-ionic surfactant molecules on polymer interdiffusion in poly(butyl methacrylate) (PBMA) latex films was investigated using the non-radiative energy transfer technique. It was found that nonylphenoxypoly(ethylene oxide) surfactants such as NP-20 and NP-100 act as plasticizers to enhance the polymer diffusion rate. The increase in diffusion rate with the increase in surfactant concentration is in complete accord with the Fujita-Doolittle free volume model. This suggests that by the time the latex dispersion is dry, the surfactant has diffused uniformly into the latex polymer.  相似文献   

20.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号