首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A kinetic model has been developed for reversible addition–fragmentation transfer (RAFT) polymerization with the method of moments. The model predicts the monomer conversion, number‐average molecular weight, and polydispersity of the molecular weight distribution. It also provides detailed information about the development of various types of chain species during polymerization, including propagating radical chains, adduct radical chains, dormant chains, and three types of dead chains. The effects of the RAFT agent concentration and the rate constants of the initiator decomposition, radical addition, fragmentation, disproportionation, and recombination termination of propagating radicals and cross‐termination between propagating and adduct radicals on the kinetics and polymer chain properties are examined with the model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1553–1566, 2003  相似文献   

2.
Living polymerization of styrene was observed using γ radiation as a source of initiation and 1‐phenylethyl phenyldithioacetate as a reversible addition–fragmentation chain transfer (RAFT) agent. The γ radiation had little or no detrimental effect on the RAFT agent, with the molecular weight of the polymer increasing linearly with conversion (up to the maximum measured conversions of 30%). The polymerization had kinetics (polym.) consistent with those of a living polymerization (first order in monomer) and proportional to the square root of the radiation‐dose rate. This initiation technique may facilitate the grafting of narrow polydispersity, well‐defined polymers onto existing polymer surfaces as well as allow a wealth of kinetic experiments using the constant radical flux generated by γ radiation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 19–25, 2002  相似文献   

3.
Block copolymers have become an integral part of the preparation of complex architectures through self‐assembly. The use of reversible addition–fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain‐transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer–S? C(Z)?S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5643–5651, 2005  相似文献   

4.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

5.
A model for the evaluation of the kinetics and the chain length distribution in living/controlled radical polymerization mediated by reversible addition–fragmentation chain transfer (RAFT) in bulk is presented. Using the free volume theory, the model accounts for the diffusion limitations over both termination and RAFT exchange reactions. Model predictions are compared to experimental results of methyl methacrylate polymerization with cumyl dithiobenzoate as a RAFT agent. It is shown that the polymerization retardation observed in living systems at large conversions is well predicted. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1071–1085, 2006  相似文献   

6.
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010  相似文献   

7.
This work describes the polymerization of the free secondary amine bearing monomer 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate (TMPMA) by means of different controlled radical polymerization techniques (ATRP, RAFT, NMP). In particular, reversible addition‐fragmentation chain transfer (RAFT) polymerization enabled a good control at high conversions and a polydispersity index below 1.3, thereby enabling the preparation of well‐defined polymers. Remarkably, the polymerization of the secondary amine bearing methacrylate monomer was not hindered by the presence of the free amine that commonly induces degradation of the RAFT reagent. Subsequent oxidation of the polymer yielded the polyradical poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl methacrylate), which represents a valuable material used in catalysis as well as for modern batteries. The obtained polymers having a molar mass (Mn) of 10,000–20,000 g/mol were used to fabricate well‐defined, radical‐bearing polymer films by inkjet‐ printing. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
The background to the formation of the Commonwealth Scientific and Industrial Research Organization (CSIRO) polymer group is discussed. In particular, the challenges of working with high‐conversion polymerization, as found in commercial systems, and the need to explain variations in polymer properties led to important advances in the theory of radical polymerization and control over both the initiation and termination steps. Studies on the fate of the macromonomer, formed in termination by disproportionation, led to an early form of addition/fragmentation now known as reversible addition–fragmentation chain transfer, whereas detailed studies on initiation pathways using nitroxide trapping led to nitroxide‐mediated living radical polymerization. These studies contributed to the renaissance in free‐radical polymerization studies. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5748–5764, 2005  相似文献   

9.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Polystyrene stars were synthesized by reversible addition–fragmentation chain‐transfer (RAFT) polymerization using hexakis(thiobenzoylthiomethyl)benzene ( I ) as a hexafunctional RAFT agent at 80, 100, and 120 °C. The polymerizations conformed to pseudo‐first‐order kinetic behavior. The molecular weight distributions displayed characteristics consistent with a living radical process. A number of salient features were observed in the molecular weight distributions with the star distribution accompanied by a linear polymer‐chain distribution and shoulders on the distributions that can be attributed to radical–radical‐termination events. The evidence suggests that high temperatures are required to activate all the RAFT active sites on I , and a hypothesis proposes that there is significant steric hindrance in the initial stages of the RAFT process with I . © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2777–2783, 2001  相似文献   

11.
Two trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agents are compared in miniemulsion polymerization of styrene and butyl acrylate and the formation of seeded emulsion block copolymers. The order of block synthesis and the number of block segments per polymer are discussed. The use of nonionic surfactants is examined and the type of surfactant in relation to the monomer used is found to have a significant affect on latex formation. Conditions are shown by which AB and ABA type block copolymers can be successfully prepared via a seeded RAFT‐mediated emulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 588–604, 2007  相似文献   

12.
The synthesis of a three‐armed polymer with an isocyanurate–thiourethane core structure is described. Monofunctional reversible addition–fragmentation chain transfer (RAFT) agent 2 and trifunctional RAFT agent 5 were prepared from mercapto‐thiourethane and tris(mercapto‐thiourethane), which were obtained from the aminolysis of mono‐ and trifunctional five‐membered cyclic dithiocarbonates, respectively. The radical polymerization of styrene in the presence of 2,2′‐azobis(isobutyronitrile) and RAFT agent 2 in bulk at 60 °C proceeded in a controlled fashion to afford the corresponding polystyrene with desired molecular weights (number‐average molecular weight = 3000–10,100) and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.13). On the basis of the successful results with the monofunctional RAFT agents, three‐armed polystyrene with thiourethane–isocyanurate as the core structure could be obtained with trifunctional RAFT agent 5 in a similar manner. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5498–5505, 2005  相似文献   

13.
Carboxyl‐ and hydroxyl‐terminated dithiocarbamates and xanthates were practically synthesized. Carboxyl‐ and hydroxyl‐terminated polymers were made from them. These reversible addition–fragmentation chain transfer (RAFT) agents had low chain‐transfer constants that resulted in wider molecular distributions for the polymers. Nevertheless, kinetic studies showed that the polymerization behaved like a RAFT‐mediated process after a fast start. 1H NMR and matrix‐assisted laser desorption/ionization spectra confirmed that the functional group or groups were cleanly transferred to the polymer end or ends. The copolymerization of methacrylates and acrylates could bring the former under control during radical polymerization. Block copolymers were synthesized through the condensation of the functional polymers with other types of functional polymers or through the condensation of the functional agents followed by radical polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4298–4316, 2006  相似文献   

14.
A copolymer of N‐isopropylacrylamide with the N‐hydroxysuccinimide ester of methacrylic acid has found use in a variety of applications. Here we report our efforts to gain control over the molecular weight distribution of this copolymer with controlled radical polymerization methods, such as atom transfer radical polymerization, reversible addition–fragmentation transfer (RAFT), and nitroxide‐mediated polymerization. We have found that RAFT is capable of affording these copolymers with a polydispersity index of 1.1–1.2. Our results for all three polymerizations are reported. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6340–6345, 2004  相似文献   

15.
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005  相似文献   

16.
Reversible addition–fragmentation chain transfer (RAFT) polymerization is a useful technique for the formation of polymers with controlled architectures and molecular weights. However, when used in the polymerization of microemulsions, RAFT agents are only able to control the polymer molecular weight only at high RAFT concentrations. Here, a kinetic model describing RAFT microemulsion polymerizations is derived that predicts the reaction rates, molecular weight polydispersities, and particle size. The model predicts that at low RAFT concentrations, the RAFT agent will be consumed early in the reaction and that this will result in uncontrolled polymerization in particles nucleated late in the reaction. The higher molecular weight polydispersity that is observed in RAFT microemulsion polymerizations is the result of this uncontrolled polymerization. The model also predicts a shift in the conversion at which the maximum reaction rate occurs and a decrease in the particle size with increasing RAFT concentration. Both of these trends are also consistent with those observed experimentally. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6055–6070, 2006  相似文献   

17.
Side‐chain liquid‐crystalline polymers of 6‐[4‐(4′‐methoxyphenyl)phenoxy]hexyl methacrylate with controlled molecular weights and narrow polydispersities were prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization with 2‐(2‐cyanopropyl) dithiobenzoate as the RAFT agent. Differential scanning calorimetry studies showed that the polymers produced via the RAFT process had a narrower thermal stability range of the liquid‐crystalline mesophase than the polymers formed via conventional free‐radical polymerization. In addition, a chain length dependence of this stability range was found. The generated RAFT polymers displayed optical textures similar to those of polymers produced via conventional free‐radical polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2949–2963, 2003  相似文献   

18.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   

19.
Supercritical carbon dioxide (scCO2) is an inexpensive and environmentally friendly medium for radical polymerizations. ScCO2 is suited for heterogeneous controlled/living radical polymerizations (CLRPs), since the monomer, initiator, and control reagents (nitroxide, etc.) are soluble, but the polymer formed is insoluble beyond a critical degree of polymerization (Jcrit). The precipitated polymer can continue growing in (only) the particle phase giving living polymer of controlled well‐defined microstructure. The addition of a colloidal stabilizer gives a dispersion polymerization with well‐defined colloidal particles being formed. In recent years, nitroxide‐mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT) polymerization have all been conducted as heterogeneous polymerizations in scCO2. This Highlight reviews this recent body of work, and describes the unique characteristics of scCO2 that allows composite particle formation of unique morphology to be achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3711–3728, 2009  相似文献   

20.
Living radical polymerization of styrene in a miniemulsion by reversible addition–fragmentation chain transfer (RAFT) was successfully realized in the presence of beta-cyclodextrin (CD), using sodium dodecyl sulfate and hexadecane as surfactant and costabilizer, respectively. The drawback of instability (red layer formation) encountered in the living radical polymerization in emulsion or miniemulsion was overcome. The linear relationship between the monomer conversion and the molecular weight, as well as lower molecular weight distribution (MWD), shows that the polymerization process was under control. The addition of CD was found to have little influence on the polymerization rate. However, MWD of the polymer synthesized is obviously decreased. The mechanism of stability and controllability improvement in the presence of CD proposed that the complex formation between CD and RAFT agent or RAFT agent-ended oligomer increased their diffusion ability from monomer droplet to polymerization locus and improved the homogeneity of the RAFT agent level among the polymerization loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号