首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed multiple short‐period delta layers as a reference material for SIMS ultra‐shallow depth profiling. Boron nitride delta layers and silicon spacer layers were sputter‐deposited alternately, with a silicon spacer thickness of 1–5 nm. These delta‐doped layers were used to measure the sputtering rate change in the initial stage of oxygen ion bombardment. A significant variation of sputtering rate was observed in the initial 3 nm or less. The sputtering rate in the initial 3 nm was estimated to be about four times larger than the steady‐state value for 1000 eV oxygen ions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
This International Standard specifies procedures for estimating three depth resolution parameters, via the leading‐edge decay length, the trailing‐edge decay length and Gaussian broadening, in SIMS depth profiling using multiple delta‐layer reference materials. This International Standard is not applicable to delta‐layers where the chemical and physical state of the near‐surface region, modified by the incident primary ions, is not in the steady state. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrogen depth distributions in silicon, zinc oxide, and glass are of great interest in material research and industry. Time‐of‐flight SIMS has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide, and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using time‐of‐flight SIMS are: (i) keeping pressure in the analysis chamber as low as possible, (ii) using a cesium beam for sputtering and monitoring the H signal, (iii) employing monatomic ion analysis beams with the highest currents, and (iv) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H signal. Detection limits of hydrogen are limited by the pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 × 10?10 mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 × 1018 atoms/cm3, 1.8 × 1018 atoms/cm3, and 5.6 × 1018 atoms/cm3, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Size‐segregated particles were collected with a ten‐stage micro‐orifice uniform deposit impactor from a busy walkway in a downtown area of Hong Kong. The surface chemical compositions of aerosol samples from each stage were analyzed using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) operated in the static mode. The ToF‐SIMS spectra of particles from stage 2 (5.6–10 µm), stage 6 (0.56–1 µm), and stage 10 (0.056–0.1 µm) were compared, and the positive ion spectra from stage 2 to stage 10 were analyzed with principal component analysis (PCA). Both spectral analysis and PCA results show that the coarse‐mode particles were associated with inorganic ions, while the fine particles were associated with organic ions. PCA results further show that the particle surface compositions were size dependent. Particles from the same mode exhibited more similar surface features. Particles from stage 2 (5.6–10 µm), stage 6 (0.56–1 µm), and stage 10 (0.056–0.1 µm) were further selected as representatives of the three modes, and the chemical compositions of these modes of particles were examined using ToF‐SIMS imaging and depth profiling. The results reveal a non‐uniform chemical distribution from the outer to the inner layer of the particles. The coarse‐mode particles were shown to contain inorganic salts beneath the organics surface. The accumulation‐mode particles contained sulfate, nitrate, ammonium salts, and silicate in the regions below a thick surface layer of organic species. The nucleation‐mode particles consisted mainly of soot particles with a surface coated with sulfate, hydrocarbons, and, possibly, fullerenic carbon. The study demonstrated the capability of ToF‐SIMS depth profiling and imaging in characterizing both the surface and the region beneath the surface of aerosol particles. It also revealed the complex heterogeneity of chemical composition in size and depth distributions of atmospheric particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
An interlaboratory study involving 32 time‐of‐flight static SIMS instruments from 13 countries has been conducted. In Part I of the analysis of data, we showed that 84% of instruments have excellent repeatabilities of better than 1.9% and that a relative instrument spectral response (RISR) can be used to evaluate variations between different generic types of instrument. Use of the RISR improves comparability between instruments by a factor of 33. Here, in Part II, we study the accuracy of the mass scale calibration in TOF‐SIMS and evaluate instrument compatibility with G‐SIMS. We show that the accuracy of calibration of the mass scale is much poorer than generally expected (?60 ppm for peaks <200 u and ?150 ppm for a large molecular peak at 647 u). This is a major issue for analysts. Elsewhere, we have developed a detailed study of the factors affecting the mass calibration and have developed a generic protocol that improves accuracy by a factor of 5. Here, this framework of understanding is used to interpret the results presented. Furthermore, we show that eight out of the ten participants submitting data for G‐SIMS could use operating conditions that generated G‐SIMS spectra of the PC reference material. This demonstrates that G‐SIMS may be conducted with a wide variety of instrument designs. © Crown Copyright 2007. Reproduced by permission of the Controller of HMSO. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Thin films of bromine‐terminated poly(bisphenol A octane ether) (BA‐C10) were prepared using 1,2‐dichlorobenzene (ODCB) as the solvent. The organization of the chains in these amorphous polymer films was evaluated using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) depth profiling. For the thin films, the bifunctional polymer chains were folded and anchored to the substrate via their two Br end groups and a polymer brush of chain loops was formed on the substrate. As the film thickness increased, polymer chains in a random coil conformation were found to reside on the top of the polymer brush. Depth profiling revealed that the polymer chains were densely packed at the interface. Moreover, the polymer films showed thermal stability, implying strong interactions between the end groups and the substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
An effect of measurement conditions on the depth resolution was investigated for dual‐beam time of flight‐secondary ion mass spectrometry depth profiling of delta‐doped‐boron multi‐layers in silicon with a low‐energy sputter ion (200 eV – 2 keV O2+) and with a high‐energy primary ion (30 keV Bi+). The depth resolution was evaluated by the intensity ratio of the first peak and the subsequent valley in B+ depth profile for each measurement condition. In the case of sputtering with the low energy of 250 eV, the depth resolution was found to be affected by the damage with the high‐energy primary ion (Bi+) and was found to be correlated to the ratio of current density of sputter ion to primary ion. From the depth profiles of implanted Bi+ primary ion remaining at the analysis area, it was proposed that the influence of high‐energy primary ion to the depth resolution can be explained with a damage accumulation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The surface of an as‐polished and an as‐sintered yttria‐stabilised zirconia pellet was analysed with XPS and TOF‐SIMS (depth profiling and imaging) in order to study the distribution of impurities. The polished sample was slightly contaminated with Na, K, Mg and Ca. The sintered sample showed a thin surface film of segregated species, especially Na, Si and Al. Below the surface film, it was found that the grain boundaries were filled with impurities. The chemical compositions of the as‐polished and as‐sintered surfaces are very different and the surface state should be considered when performing electrochemical measurements. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
An interlaboratory study involving 32 Time‐of‐Flight Static SIMS instruments from 12 countries has been conducted. Analysts were supplied, by NPL, with a protocol for analysis together with three reference materials; a thin layer of polycarbonate (PC) on a silicon wafer, a thin layer of polystyrene (PS) oligomers on etched silver and poly(tetrafluoroethylene) (PTFE). The study involved static SIMS analysis of each reference material for both positive and negative polarity secondary ions. The option to test instrument suitability for G‐SIMS was also provided. The results of this study show that over 84% of instruments have excellent repeatabilities of better than 1.9%. Repeatabilities can be as good as 0.4%. A relative instrument spectral response (RISR) is calculated for each instrument for each reference material and ion polarity. The RISR is used to evaluate variations in spectral response between different generic types of SIMS instruments. Use of the RISR allows the identification of contamination, charge stabilisation problems and incorrectly functioning ion detectors. The high quality of the data presented here allows the RISR to reveal differences in individual operation of each instrument such as the use of apertures to remove metastables from the spectra and the use of different post‐acceleration voltages for ion detection. Spectral reproducibility can be measured, here, by the equivalence of RISRs between materials and ion polarities. It is found that reproducibilities are on average 10% but can be as good as 4% for the best instruments. This figure shows the consistency between instruments in measuring spectra from different samples. This study sets out the basic framework to develop static secondary ion mass spectrometry (SSIMS) as a reliable measurement method. © Crown Copyright 2005. Reproduced with the permission of Her Majestry's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

10.
The possibilities of quantitative secondary ion mass spectrometry (SIMS) depth profiling of Al in AlxGa1 ? xN/AlN/GaN transistor heterostructures are shown. Using a series of test structures for a TOF.SIMS‐5 time‐of‐flight mass spectrometer, we obtained a refined linear calibration dependence of the secondary‐ion yield on the composition ×, namely, Y(CsAl+)/Y(CsGa+) = K × x/(1 ? x), with a high linear correlation coefficient, Rl = 0.9996, which permits quantitative SIMS analysis of relatively thick AlGaN barrier layers. The method of profile reconstruction with allowance for the main artifacts of ion sputtering has been first applied for the analysis of GaN/AlGaN/AlN/GaN high electron mobility transistor structure. This method permits to perform quantitative analysis of the thickness and composition of a nanometer‐thin AlN sublayer and to estimate the measurement error. For the structure being studied, the AlN sublayer is 1.2 ± 0.2 nm thick. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A new type of test sample for the determination of lateral resolution in surface analysis is presented. The certified reference material BAM‐L002 ‘Nanoscale strip pattern for length calibration and testing of lateral resolution’ is an embedded cross‐section of epitaxially grown layers of AlxGa1?xAs and InxGa1?xAs on GaAs substrate. The surface of the sample provides a flat pattern with strip widths of 0.4–500 nm. The combination of gratings, isolated narrow strips and sharp edges of wide strips offers improved possibilities for the calibration of a length scale, the determination of lateral resolution and the optimization of instrument settings. The feasibility of the reference material for an analysis of lateral resolution is demonstrated for SIMS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Stable and unstable spin‐coated polymer films were prepared using various solvents and substrates. The relationship between polymer end‐group concentrations and stability of spin‐coated polymer films was revealed by time‐of‐flight secondary ion mass spectrometry depth profiling. A high concentration of bromine end groups at the interface between the polymer and the substrate helped to prevent the dewetting of films. In contrast, the bromine end groups were found to be more evenly distributed in unstable thin films. The extent to which the bromine end groups segregate to the interface depended on the competitive interactions between the polymer, the solvent and the substrate. Stronger polymer–solvent and solvent–substrate interactions prevented the segregation of the bromine end groups to the interface, resulting in unstable polymer films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Directed self‐assembly of block copolymers (BCPs) is a promising candidate for next generation nanolithography. In order to validate a given pattern, the lateral and in‐depth distributions of the blocks should be well characterized; for the latter, time‐of‐flight (ToF) SIMS is a particularly well‐adapted technique. Here, we use an ION‐TOF ToF‐SIMS V in negative mode to provide qualitative information on the in‐depth organization of polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) BCP thin films. Using low‐energy Cs+ sputtering and Bi3+ as the analysis ions, PS and PMMA homopolymer films are first analyzed in order to identify the characteristic secondary ions for each block. PS‐b‐PMMA BCPs are then characterized showing that self‐assembled nanodomains are clearly observed after annealing. We also demonstrate that the ToF‐SIMS technique is able to distinguish between the different morphologies of BCP investigated in this work (lamellae, spheres or cylinders). ToF‐SIMS characterization on BCP is in good agreement with XPS analysis performed on the same samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Generally, dynamic secondary ion mass spectrometry (SIMS) has been mainly used as one of the most powerful tools for inorganic mass analysis. On the other hand, an Ar gas cluster ion beam (GCIB) has been developed and spread as a processing tool for surface flattening and also a projectile for time‐of‐flight (ToF) SIMS. In this study, we newly introduced an Ar‐GCIB as a primary ion source to a commercially available dynamic SIMS apparatus, and investigated mass spectra of amino acid films (such as Arginine and Glycine) and polymer films (Polyethylene: PE and Polypropylene: PP) as organic model samples. As a result, each characteristic fragment peak indicating the original molecular organic structure was observed in the acquired mass spectra. In addition, their own molecular ions of the amino acids were also clearly observed. Mass spectra of PE/PP blended‐polymer films acquired using Ar‐GCIB‐dynamic SIMS could be identified between pure PE and PE:PP = 1:3 mixture by applying principal component analysis (PCA).  相似文献   

15.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The design philosophy and implementation of an ultra high vacuum (UHV), PC controlled, automated in situ fracture stage for a surface analysis system is described. ToF‐SIMS spectra are shown to illustrate the improvement in spectral quality obtained from micro‐compact tension (CT) tests of polymer matrix fracture surfaces produced using the fracture stage in UHV compared to those obtained from a sample tested at air. This system is flexible in that by changing the capacity of the load cell it is possible to reduce or increase maximum loads as the specimen type and material demands. The stage has been designed with instrumental flexibility in mind, utilising commercial SEM‐stub type sample mounts, and can thus be used for AES/SAM and XPS investigations, as well as ToF‐SIMS analysis, in the authors' laboratory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The sputter damage profiles of Si(100) by low‐energy O2+ and Ar+ ion bombardment at various angles of incidence were measured using medium‐energy ion scattering spectroscopy. It was observed that the damaged Si surface layer can be minimized down to 0.5–0.6 nm with grazing‐incident 500 eV Ar+ and O2+ ions at 80°. To illustrate how the damaged layer thickness can be decreased down to 0.5 nm, molecular dynamics simulations were used. The SIMS depth resolution estimated with trailing‐edge decay length for a Ga delta‐layer in Si with grazing‐incident 650 eV O2+ was 0.9 nm, which is in good agreement with the measured damaged layer thickness. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) can be used to image biological samples with nanometer‐scale resolution, albeit with the drawback that it often cannot detect large molecular signals. One way to increase secondary ion molecular yield is to chemically modify the surface in the so‐called matrix‐enhanced SIMS (ME‐SIMS) approach, which is based on embedding analyte molecules in low‐weight organic matrices. In this study, a solvent‐free sample preparation technique was employed using sublimation/deposition for coating a mouse brain section with a thin layer of a 2,5‐dihydroxybenzoic acid (DHB) matrix. Using this preparation technique, signal enhancements of up to a factor of 18 could be detected. It was found that the matrix layer thickness plays an important role in the efficiency of yield enhancement. Also, a complex influence of the matrix layer on various signals was observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We attempted to make an accurate depth profiling in secondary ion mass spectrometry (SIMS) including backside SIMS for ultra‐thin nanometer order layer. The depth profiles for HfO2 layers that were 3 and 5 nm thick in a‐Si/HfO2/Si were measured using quadrupole and magnetic sector type SIMS instruments. The depth profiling for an ultra‐thin layer with a high depth resolution strongly depends on how the crater‐edge and knock‐on effects can be properly reduced. Therefore, it is important to control the analyzing conditions, such as the primary ion energy, the beam focusing size, the incidence angle, the rastered area, and detected area to reduce these effects. The crater‐edge effect was significantly reduced by fabricating the sample into a mesa‐shaped structure using a photolithography technique. The knock‐on effect will be serious when the depth of the layer of interest from the surface is located within the depth of the ion mixing region due to the penetration of the primary ions. Finally, we were able to separately assign the origin of the distortion to the crater‐edge effect and knock‐on effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Analyses of freshwater are routinely performed by a number of organisations to monitor the levels of major elements. In order to improve and control the quality of such determinations, the Community Bureau of Reference (BCR) has organised a certification campaign to produce two reference materials (CRM 398, low element content and CRM 399, high element content) certified for their contents of Al, Ca, Cl, Fe, Mg, Mn, K, Na, P and S. These materials were carefully prepared (addition of the elements mentioned in the form of ammonium salts or nitrates to silica free deionised water) and their homogeneity and long term stability were verified. This paper presents the certification work performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号