首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new negative‐working and alkaline‐developable photosensitive polyimide precursor based on poly(amic acid) (PAA), 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol (MBHP) as a crosslinker, and a photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐2‐(methylphenyl)acetonitrile (PTMA) has been developed. PAA was prepared by ring‐opening polymerization of pyromellitic dianhydride with 4,4′‐oxydianiline. The photosensitive polyimide precursor containing PAA (65 wt %), MBHP (25 wt %), and PTMA (10 wt %) showed a clear negative image featuring 10 μm line and space patterns when it was exposed to 436 nm light at 100 mJ·cm?2, post‐exposure baked at 130 °C for 3 min, followed by developing with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 593–599, 2005  相似文献   

2.
This article reports a novel crosslinking functionality of the 2‐hydroxyethyl methacrylate unit (HEMA) in the presence of an acid. The polymeric compositions, consisting of a polymer containing the HEMA unit and a photoacid generator, were insolubilized in an aqueous base developer on exposure to UV light and a successive baking process to provide a negative‐working photoresist. A series of poly(benzyl methacrylate‐co‐methacrylic acid‐co‐2‐hydroxyethyl methacrylate) terpolymers with various contents of HEMA were prepared to elucidate the photopolymeric characteristics. The polymer behavior in films was examined by a comparison of the photosensitivity and IR spectroscopic method. Experiments with a model compound were also carried out. On the basis of the results, we found that the resist was insolubilized by crosslinking through the transesterification of HEMA segments due to acid generated from the photoacid generator and subsequent heating. The advantage of using the 2‐hydroxyethyl group is that in the terpolymer, the HEMA unit is transparent at a short‐wavelength region and is a promising crosslinking unit for ArF lithographic photoresists. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1858–1867, 2002  相似文献   

3.
The reaction conditions of the oxidative polycondensation of 2‐[(pyridine‐2‐yl‐methylene) amino] phenol (2‐PMAP) with air O2, H2O2, and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Oligo‐2‐[(pyridine‐2‐yl‐methylene) amino] phenol (O‐2‐PMAP) was characterized with 1H NMR, Fourier transform infrared, ultraviolet–visible, size exclusion chromatography (SEC), and elemental analysis techniques. Moreover, solubility testing of the oligomer was performed in polar and nonpolar organic solvents. With the NaOCl, H2O2, and air O2 oxidants, the conversions of 2‐PMAP into O‐2‐PMAP were 98, 87, and 62%, respectively, in an aqueous alkaline medium. According to SEC, the number‐average molecular weight, weight‐average molecular weight, and polydispersity index of O‐2‐PMAP were 2262 g mol?1, 2809 g mol?1, and 1.24 with NaOCl, 3045 g mol?1, 3861 g mol?1, and 1.27 with air O2, and 1427 g mol?1, 1648 g mol?1, and 1.16 with air H2O2, respectively. Also, thermogravimetric analysis showed that O‐2‐PMAP was stable against thermooxidative decomposition. The weight loss of O‐2‐PMAP was 96.68% at 900 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2717–2724, 2004  相似文献   

4.
A negative working and chemically amplified photosensitive polymer has been developed, which is based on poly(2,6‐dihydroxy‐1,5‐naphthalene) (PDHN), the crosslinker 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol, and the photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile. PDHN, with a number‐average molecular weight of 25,000, was prepared by the oxidative coupling polymerization of 2,6‐dihydroxynaphthalene with di‐μ‐hydroxo‐bis[(N,N,N′,N′‐tetramethylethylenediamine)copper(II)] chloride in 2‐methoxyethanol at room temperature. The resulting PDHN showed a 5% weight loss temperature of 440 °C in nitrogen and a low dielectric constant of 2.82. The resist showed a sensitivity of 8.3 mJ cm?2 and a contrast of 11 when it was exposed to 436‐nm light, followed by postexposure baking at 100 °C for 5 min and development with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. A fine negative image featuring 10‐μm line‐and‐space patterns was obtained on a film 3 μm thick exposed to 10 mJ cm?2 of ultraviolet light at 436 nm in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2235–2240, 2004  相似文献   

5.
The synthesis of well‐defined carboxylic acid‐functionalized glycopolymers prepared via one‐step postpolymerization modification of poly(N‐[3‐aminopropyl] methacrylamide) (PAPMA), a water‐soluble primary amine methacrylamide, in aqueous medium is demonstrated. PAPMA was first polymerized via aqueous reversible addition‐fragmentation chain transfer polymerization in aqueous buffer using 4‐cyanopentanoic acid dithiobenzoate as the chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (V‐501) as the initiator at 70 °C. The resulting well‐defined PAPMA was then conjugated with D ‐glucuronic acid sodium salt through reductive amination in alkaline medium (pH 8.5) at 45 °C. The successful bioconjugation was proven through proton (1H) and carbon (13C) nuclear magnetic resonance spectroscopy and matrix‐assisted laser desorption/ionization time of flight mass spectrometry analysis, which indicated near quantitative conversion. A similar bioconjugation reaction was conducted with poly(2‐aminoethyl methacrylate) (PAEMA) and poly(2‐aminoethyl methacrylate‐b‐poly(N‐[2‐hydroxypropyl]methacrylamide) (PAEMA‐b‐PHPMA). For the PAEMA homopolymers and block copolymers, however, lower conversion was obtained, most likely because of degradation reactions of PAEMA in alkaline medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3052–3061, 2010  相似文献   

6.
Homopolyaddition reactions of AB‐type monomers containing a 2‐oxazoline and a phenol group in different positions of the phenyl ring, namely, 2‐(4‐hydroxyphenyl)‐2‐oxazoline, 2‐(3‐hydroxyphenyl)‐2‐oxazoline, 2‐(2‐hydroxyphenyl)‐2‐oxazoline, and 2‐(4‐hydroxyphenyl)‐4,4‐dimethyl‐2‐oxazoline, were studied. Except for 2‐(4‐hydroxyphenyl)‐4,4‐dimethyl‐2‐oxazoline, the reaction carried out in bulk or a solution of highly boiling solvents resulted in the formation of poly(ether amide)s with molecular weights in the range of 103 to 104 as measured by vapor pressure osmometry and gel permeation chromatography. A mechanism of the growth reaction, including a nucleophilic attack of a phenol group to a 2‐oxazoline ring in the 5‐position, was suggested. The polymerization was accompanied by a side reaction of the amido groups formed by the primary reaction of the 2‐oxazoline ring. This led to branching of the main chain. The thermal properties of the prepared polymers were evaluated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 343–355, 2006  相似文献   

7.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

8.
A chemically amplified photosensitive and thermosetting polymer based on poly[2,6‐di(3‐methyl‐2‐butenyl)phenol (15 mol %)‐co‐2,6‐dimethylphenol (85 mol %)] ( 3c ) and a photoacid generator [(5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile] was developed. Poly[2,6‐bis(3‐methyl‐2‐butenyl)phenol]‐co‐2,6‐dimethylphenol)] ( 3 ) with high molecular weights (number‐average molecular weight ~ 24,000) was prepared by the oxidative coupling copolymerization of 2,6‐di(3‐methyl‐2‐butenyl)phenol with 2,6‐dimethylphenol in the presence of copper(I) chloride and pyridine as the catalyst under a stream of oxygen. The structures of 3 were characterized with IR, 1H NMR, and 13C NMR spectroscopy. 3 was crosslinked by a thermal treatment at 300 °C for 1 h under N2. The 5% weight loss temperatures and glass‐transition temperatures of the cured copolymers reached around 420 °C in nitrogen and 300 °C, respectively. The average refractive index of the cured copolymer ( 3c ) film was 1.5452, from which the dielectric constant at 1 MHz was estimated to be 2.6. The resist showed a sensitivity of 35 mJ cm?2 and a contrast of 1.6 when it was exposed to 436‐nm light, postexposure‐baked at 145 °C for 5 min, and developed with toluene at 25 °C. A fine negative image featuring 8‐μm line‐and‐space patterns was obtained on a film exposed to 100 mJ cm?2 with 436‐nm light in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 149–156, 2005  相似文献   

9.
The phase‐transfer catalyzed polycondensation of α,α′‐dichloro‐p‐xylene with 4,4′‐isopropylidenediphenol was carried out using benzylethylammonium chloride in a two‐phase system of an aqueous alkaline solution and benzene at 60 °C under nitrogen atmosphere. The rate of polycondensation was expressed as the combined terms of quaternary onium cation and 4,4′‐isopropylidenediphenolate anion rather than the feed concentration of catalyst and 4,4′‐isopropylidenediphenol. The measured concentrations of hydroxide and chloride anion in the aqueous solution and α,α′‐dichloro‐p‐xylene in the organic phase were used to obtain the reaction rate constant with the integral method, and to analyze the polycondensation mechanism with a cyclic phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3059–3066, 2000  相似文献   

10.
The inverse microemulsion polymerization of acrylamide in a paraffinic solvent, Rolling‐M‐245, stabilized by a mixture of nonionic surfactants (Emulan‐ELP‐11 and Brij‐92), was studied. Pseudoternary phase diagrams of this system were determined, and a range of hydrophilic‐lipophilic balance (HLB) values, from 8.98 to 9.2, were selected as the most favorable for acrylamide polymerization. The influence of factors such as the initiator composition, HLB, percentage of the aqueous phase, and addition of the monomer by steps on the final conversion and polyacrylamide molar masses were investigated. High conversions and molar masses were generally obtained with the different formulations. The polyacrylamide molar masses were influenced by the HLB and content in the aqueous phase. The addition of the aqueous phase by steps led to a progressive diminution of the molar masses as the number of stages increased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2495–2503, 2005  相似文献   

11.
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005  相似文献   

12.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

13.
An oligoamide‐ended poly(ethylene glycol) (PEG) with a PEG weight‐average molecular weight of 5000 (PEG‐5000‐oligoamide), with 3,5‐bis‐[2‐(5‐acetylamino‐2‐isobutoxy‐benzoylamino)‐acetylamino]‐benzoyl as the oligoamide, was synthesized. PEG‐5000‐oligoamide aggregated in chloroform or toluene via hydrogen‐bonding interactions among the oligoamide strands as a core and PEG, which was soluble in the solvents, as a shell. When a chloroform solution of PEG‐5000‐oligoamide at a concentration of approximately 0.06 g/L was cast onto a silicon wafer or a mica plate, rapid solvent evaporation induced its self reassembly as nanofibers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1119–1128, 2005  相似文献   

14.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

15.
A positive working photosensitive polymer based on poly(2,6‐dihydroxy‐1,5‐naphthylene) (PDHN) with 1‐(1,1‐bis{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}ethyl)‐4‐(1‐{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}methylethyl) benzene (S‐DNQ) as a photosensitive compound has been developed. PDHN (number‐average molecular weight: 13,000; polydispersity index: 1.9) was prepared by oxidative coupling polymerization of the 2,6‐dihydroxynaphthalene‐benzylamine complex using iron(III) chloride hexahydrate in the solid state. A 10 wt % loss temperature of PDHN was 450 °C in air, and the film of 1 μm thickness showed excellent transparency above 400 nm. The resist system consisting of PDHN and S‐DNQ gave a clear positive pattern when it was exposed to 436 nm of light, followed by development with a 0.50 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. The sensitivity (D) and contrast (γ) were 300 mJ/cm2 and 2.1, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 393–398, 2002  相似文献   

16.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

17.
A novel phosphorus‐containing trifunctional novolac (dopotriol) was synthesized through the addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and rosolic acid. The structure of dopotriol was confirmed with NMR spectroscopy and elemental analyses. The dopotriol was blended with phenol novolac in the ratios of 10/0, 8/2, 6/4, 4/6, 2/8, and 0/10 to serve as a curing agent for diglycidyl ether of bisphenol A. Thermal properties, such as the glass‐transition temperature, thermal decomposition temperature, and flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The activity and activation energy of curing were studied with the methods of Kissinger and Ozawa by dynamic differential scanning calorimetry scans. The glass‐transition temperatures of the cured epoxy resins were 138–159 °C, increasing with the phosphorus content. This is rarely seen in the literature after the addition of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.87%. Similar dielectric properties and moisture absorption were observed for these phosphorus‐containing epoxy resins, and this implied that the addition of phosphorus to epoxy did not affect the dielectric properties and moisture absorption. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2862–2873, 2005  相似文献   

18.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

19.
New Nickel (II) catalytic systems based on N,O chelate ligands, activated by methylaluminoxane, have been checked in the homopolymerization of methyl methacrylate (MMA) and its copolymerization with ethylene. In particular, the bis(8‐hydroxy‐5‐nitro‐quinolate)nickel(II)/methylaluminoxane system as well as the catalysts obtained by oxidative addition of either 8‐hydroxy‐5‐nitro‐quinoline or 8‐hydroxy‐5,7‐dinitro‐quinoline or 4‐nitro‐2‐(p‐nitrobenzylideneamino)‐phenol to Ni(cod)2, subsequently activated by methylaluminoxane, have been employed. The influence of the reaction parameters on the catalytic activity and the characteristics of the resulting polymers has been investigated. All the obtained poly(methyl methacrylate) samples display a largely prevailing syndiotacticity degree, high molecular weights and a rather large polydispersity. The catalytic systems obtained through the oxidative procedure are able also to give copolymers of MMA with ethylene producing highly linear polyethylenes containing a low amount (1.5–2 mol %) of MMA counits, thus affording materials with improved surface properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 620–633, 2006  相似文献   

20.
A positive‐working chemically amplified photosensitive polyimide (PSPI) developable with basic aqueous solutions was obtained from poly(amic acid ethoxymethylester) (PAAE) as a polyimide precursor and diphenyliodonium 5‐hydroxynaphthalene‐1‐sulfonate (DINS) as a photoacid generator. The norbornene‐end‐capped PAAE based on 4,4′‐oxydiphthalic anhydride and 4,4′‐oxydianiline exhibited high transparency at 365 nm. The protection ratio of the ethoxymethyl groups was optimized to maximize the difference between the dissolution rates of the exposed and unexposed areas. The acid generated from DINS in the UV‐exposed region effectively deprotected the ethoxymethyl groups of PAAE by a chemical amplification mechanism. A 10‐μm‐thick film of the PSPI precursor system containing 16 wt % DINS exhibited a sensitivity (Do) of 1100 mJ cm?2 when developed with a 2.38 wt % aqueous tetramethyl ammonium hydroxide solution at room temperature. A fine, positive, 5‐μm line‐and‐space pattern was fabricated in a 15‐μm‐thick film with 1500 mJ cm?2 of UV exposure. This resolution is excellent in comparison with those previously reported for chemically amplified PSPIs, and such a film can thus be used as a buffer coating in semiconductor packaging. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5520–5528, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号