首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of novel waterborne hyperbranched polyurethane acrylates for aqueous dispersions (WHPUD) based on hydroxy-functionalized hyperbranched aliphatic polyester Boltorn H20 were investigated and used as UV curable oligomers. The aqueous dispersions were electrostatically stabilized with carboxyl groups incorporated into their structures, which were neutralized by triethylamine. The photopolymerization kinetics of these WHPUDs was studied with respect to polymerization rates and unsaturation conversions in the presence of a photoinitiator using differential scanning calorimetry. The polymerization rates of the resins under UV irradiation and the gel contents in the cured films showed an increasing trend with higher concentration of acrylate functionality, which is in favor of the theory of radical chain polymerization. The mechanical and thermal behaviors of UV cured films of aqueous dispersions were evaluated by tensile testing and dynamic mechanical thermal analysis (DMTA). The results of DMTA investigations indicated that the glass transition temperature shifted to higher temperature as the content of the hard segment consisting of IPDI-HEA increased. Moreover, the storage modulus and pendulum hardness also increased with increasing the hard segment content. As the degree of neutralization increased, the Tg and tensile strength decreased, whereas, the elongation at break increased.  相似文献   

2.
A novel waterborne hyperbranched polyurethane acrylate for aqueous dispersions (WHPUDs) based on hydroxy‐functionalized hyperbranched aliphatic polyester Boltorn? H20 was investigated. The effects of structural composition and crosslinking density have been studied in terms of swellability by water, thermal degradation, viscosity changes as well as transmission electron microscopy (TEM) morphology. The swell ratio showed an increasing trend with the higher concentration of ionic group, which is due to the increased total surface area of particles. The results of thermogravimetric analysis (TGA) for cured WHPUD films indicated good thermal stability with no appreciable weight loss until 200°C. The activation energies were evaluated and were found in the range 154–186 kJ mol?1. It was observed that an increase in hard segment content provoked the increases in thermal degradation temperature and activation energy of waterborne dispersions. The transmission electron photographs revealed that the average particle sizes of aqueous dispersions were in the range 30–125 nm. Owing to the enlargement of the stabilization site, the particle size decreased as the content of carboxyl group and degree of neutralization increased. The viscosity of WHPUDs increased rapidly with increasing the degree of neutralization. Moreover, water showed a favorable viscosity reduction effect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A novel star polyurethane acrylate (SPUA) used for UV‐curable coating was prepared from 2,4‐toluene diisocyanate, 2‐hydroxyethyl arcylate, and hexakis(2‐hydroxyethyl)melamine, and characterized using FTIR, 1H‐NMR, and elemental analysis. Its UV curing behaviors investigated via FTIR clearly indicated that this monomer could be cured rapidly at air atmosphere. The conversion of the unsaturated bond of the cured monomer sample is near to 72% after exposed under UV light for 40 sec. The hardness, flexibility, and mechanical properties of the cured film were also investigated. The thermal stability of the cured film was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). Results showed that this oligomer has some superior properties and can be used for UV curing coating. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The synthesis and characterization of poly(dimethylsiloxanes) bearing maleimides end‐groups (PDMSM) were carried out through imidization of maleic anhydride with three poly(dimethylsiloxanes) diamines of different molecular weights. Self‐photopolymerization of PDMSM was studied by Real‐Time Fourier Transform infrared spectroscopy (RT‐FTIR) and was possible even without photoinitiator (Darocur 1173). The reaction was found to proceed within seconds upon exposure to ultraviolet (UV) radiation to generate highly crosslinked polymer networks. The results indicated that these polymerizations were less sensitive to oxygen inhibition than the radical processes carried out on conventional UV‐curable acrylate resins. The thermal and mechanical properties of these resulting materials were studied starting from PDMS precursors with different molecular weights. These materials exhibit a low glass transition temperature (相似文献   

5.
A series of shape‐memory epoxy thermosets were synthesized by crosslinking diglycidyl ether of bisphenol A with mixtures of commercially available hyperbranched poly(ethyleneimine) and polyetheramine. Thermal, mechanical and shape‐memory properties were studied and the effect on them of the content and structure of the hyperbranched polymer was discussed. Measurements showed that the glass transition temperature can be tailored from 60 °C to 117 °C depending on the hyperbranched polymer content, and all formulations showed an appropriate glassy/rubbery storage modulus ratio. Shape‐memory programming was carried out at TgE′ given the excellent mechanical properties of the materials, with maximum stress and failure strain up to 15 MPa and 60%, respectively. The resulting shape‐memory behavior was excellent, with maximum shape recovery and shape fixity of 98% as well as a fast shape‐recovery rate of 22%/min. The results show that hyperbranched poly(ethyleneimine) as a crosslinking agent can be used to enhance mechanical and shape‐memory properties with different effects depending on the crosslinking density. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 924–933  相似文献   

6.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
To compare the properties of hyperbranched polymers with linear oligomers for preparing organic‐inorganic hybrids, hyperbranched aliphatic polyester (BoltornTM H20) and linear polyester hexa‐acrylate (EB830) were selected as organic components for preparing UV‐curable transparent hybrid materials using 3‐(trimethoxysilyl) propylmethacrylate as a coupling agent via a sol‐gel process. The prehydrolyzed product of tetraethoxysilane was used as an inorganic component. The effects of inorganic content on the morphologies, thermal behaviors, photopolymerizaiton kinetics and mechanical properties of the hybrids were investigated. The results show that for hyperbranched polyester‐based hybrids, the organic phase shows much better compatibility with inorganic phase even at high inorganic component content due to its special spheral shape and plenty of functional end groups, compared with linear EB830‐based hybrids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The use of commercially available hyperbranched poly(ethyleneimine)s (Lupasol?, BASF) as polymeric modifiers in diglycidyl ether of bisphenol A thermosetting formulations using 1‐methylimidazole (MI) as anionic initiator has been studied. Poly(ethyleneimine)s can get incorporated into the network structure by condensation of amine and epoxy groups. The excess, over‐stoichiometric epoxy groups can undergo anionic homopolymerization initiated by MI. The thermal, dynamomechanical, and mechanical properties of the resulting materials have been determined using DSC, thermomechanical analysis (TMA), dynamomechanical analysis (DMA), and mechanical testing. The effect of the different amine modifiers on the MI networks, determined by their structure, is complex. Low initiator content and high molecular weight modifiers create significant mobility restrictions, which have a strong effect on the glass transition temperature and the apparent crosslinking density of the cured materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
The unison of vegetable oil‐based hyperbranched polymers with nanotechnology can unhook myriad of avant‐garde applications of such materials. Thus Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/clay nanocomposites and their performance, with special reference to adhesive strength, are reported for the first time. The nanocomposites of the hyperbranched polyurethane with organically modified nanoclay were obtained by ex situ solution technique and cured by bisphenol‐A‐based epoxy with poly(amido amine) hardener system. The partially exfoliated and well‐distributed structure of nanoclay was confirmed by XRD, SEM, and TEM studies. FTIR spectra indicate the presence of H‐bonding between nanoclay and the polymer matrix. Two times improvement in the adhesive strength and scratch hardness, 10 MPa increments in the tensile strength and 112°C more thermo‐stability have been observed without much affecting the impact resistance, bending, and elongation at break of the nanocomposites compared to the pristine epoxy modified HBPU system. Thus, the resulted nanocomposites are promising materials for different advanced applications including adhesive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A novel method for surface modification of UV‐cured epoxy network was described. Photoinitiated cationic copolymerization of a bisepoxide, namely 3,4‐epoxy cyclohexylmethyl 3,4‐epoxycyclohexanecarboxylate (EEC) with epibromohydrine (EBH) by using a cationic photoinitiator, [4‐(2‐methylpropyl)phenyl]4‐methylphenyl‐iodonium hexafluorophosphate, in propylene carbonate solution was studied. The real‐time Fourier transform infrared spectroscopic, gel content determination and thermal characterization studies revealed that both EEC and EBH monomers take part in the polymerization and epoxy network possessing bromomethyl functional groups was obtained. The bromine functions of the cured product formed on the glass surface were converted to azide functionalities with sodium azide. Independently prepared alkyne functional poly(ethylene glycol) (PEG) was subsequently anchored to azide‐modified epoxy surface by a “click” reaction. Surface modification of the network through incorporation of hydrophilic PEG chain was evidenced by contact angle measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2862–2868, 2010  相似文献   

12.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

13.
A series of fractions of a hyperbranched polyester in deutero tetrahydrofuran solution were investigated by small‐angle neutron scattering. Concentrations of polymer from 2 to 5% w/v were used, and the molecular parameters were obtained from Zimm plots of the data. Second virial coefficients were positive, and these values were confirmed by dilute‐solution light scattering on a small number of fractions with deutero tetrahydrofuran as a solvent. The small‐angle neutron scattering data exhibited the general features predicted for the particle scattering functions of nonrandomly branched polymers, but an exact fit of the theoretical equation to the data could not be obtained for all fractions of the hyperbranched polymer, particularly those of high molecular weight. Excluded volume effects were cited as a possible cause for this disagreement. A fractal dimension of ~2.5 was obtained from the scattering vector dependence of the differential scattering cross section of the polymer in deutero tetrahydrofuran solution, which agreed with the scaling exponent for the dependence of the radius of gyration on weight‐average molecular weight. Hydrogenous tetrahydrofuran solutions of the hyperbranched polymer exhibited negative second virial coefficients that were attributed to isotopic influences on the thermodynamic properties of the polymer–solvent combination. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1352–1361, 2003  相似文献   

14.
The bio‐based shape memory polymers have generated immense interest as advanced smart materials. Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/Fe3O4 nanocomposites were prepared by the in‐situ polymerization technique. The transmission electron microscopy confirmed the homogeneous distribution of the Fe3O4 nanoparticles in polymer matrix, whereas Fourier transform infrared spectroscopic study revealed the presence of strong interfacial interactions between them. The incorporation of Fe3O4 (0 to 10 wt%) into the HBPU resulted in an increase in tensile strength (5.5–15 MPa) and scratch resistance (3–6 kg). The thermo‐gravimetric analysis indicated the improvement of thermal stability (240–270°C) of the nanocomposites. The nanocomposites exhibited full shape fixity, as well as almost full shape recovery under the microwave stimulus. The shape recovery speed increased with the increase of Fe3O4 nanoparticles content in the nanocomposites. Thus, the studied nanocomposites might be used as advanced shape memory materials in different potential fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
UV‐curing technique was employed in this study to prepare polyester‐acrylate nanocomposite films with silane‐grafted silica nanoparticles. Methacryloxypropyl trimethoxysilane was grafted to the surfaces of silica nanoparticles to improve dispersion of silica nanoparticles as well as interfacial adhesion between the resin matrix and silica nanoparticles. The silane‐grafting was confirmed by nuclear magnetic resonance and infrared spectroscopy. The effects of the silane‐grafting on the mechanical and optical properties as well as UV‐curing behavior of the nanocomposite films were investigated. The tensile strength, transmittance, UV‐curing rate, and final chemical conversion of the nanocomposite films were increased by use of the grafted silica nanoparticles as compared to the use of neat silica nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Polymerization of multifunctional acrylate monomers generates crosslinked polymers that are noted for their mechanical strength, thermal stability, and chemical resistance. A common reactive diluent to photopolymerizable formulations is N‐vinyl pyrrolidone (NVP), which is known to reduce the inhibition of free radical photopolymerization by atmospheric oxygen. In this work, the copolymerization behavior of NVP was examined in acrylate monomers with two to five functional groups. At concentrations as low as 2 wt %, NVP increases the polymerization rate in copolymerization with multifunctional acrylate monomer. The relative rate enhancement associated with adding NVP increases dramatically as the number of acrylate double bonds changes from two to five. The influence of NVP on polymerization kinetics is related to synergistic cross‐propagation between NVP and acrylate monomer, which becomes increasingly favorable with diffusion limitations. This synergy extends bimolecular termination into higher double bond conversion through reaction diffusion controlled termination. Copolymerizing concentrations of 5–30 DB% NVP with diacrylate or pentaacrylate monomer also increases Young's modulus and the glass transition temperature (Tg) in comparison to neat acrylate polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4062–4073, 2007  相似文献   

17.
Polyurethane acrylate (PUA)/clay nanocomposites were prepared by UV‐curing from a series of styrene‐based polymerically‐modified clays and PUA resin. Effect of the chemical structure of the polymeric surfactants on the morphology and tensile properties of nanocomposites has been explored. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) experimental results indicated that surfactants having hydroxyl or amino groups show better dispersion and some of the clay platelets were fully exfoliated. However, the composites formed from pristine clay and other polymerically‐modified clays without hydroxyl or amino groups typically contained both tactoids and intercalated structure. The mechanical properties of PUA composites were greatly improved where the organoclays dispersed well. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) were carried out to examine the thermal properties of the composites. The results showed that the loading of polymerically‐modified clays do not effect the thermal stability, but increased the Tgs of PUA/clay composites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4′‐diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM‐cured epoxy/HBP blends with HBP content up to 40 wt % were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy‐rich phase and an HBP‐rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt %, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt % HBP exhibits a combined morphology of connected globules and bicontinuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100–300 nm were formed after the HBP‐rich phase was extracted with solvent from the cured blend with 40 wt % HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 889–899, 2006  相似文献   

19.
An amine‐terminated hyperbranched polyimide (HBPI) was prepared by the condensation polymerization of a commercially available triamine monomer with a dianhydride monomer. The effects of the HBPI content on the thermal and mechanical interfacial properties of diglycidyl ether of bisphenol A (DGEBA) epoxy resins were investigated with several techniques. The thermogravimetric analysis results showed that the thermal stability of the DGEBA/HBPI blends did not obviously change as the HBPI content increased. The glass‐transition temperature (Tg) of the DGEBA/HBPI blends increased with the addition of HBPI. Improvements in the critical stress intensity factor (KIC) and impact strength of the blends were observed with the addition of HBPI. The KIC value and impact strength were 2.5 and 2 times the values of the neat epoxy resins with only 4 wt % HBPI. The fractured surfaces were studied with scanning electron microscopy to investigate the morphology of the blends, and they showed that shear deformation occurred to prevent the propagation of cracks in the DGEBA/HBPI blends. These results indicated that a toughness improvement was achieved without a decrease in the thermal stability or Tg. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3348–3356, 2006  相似文献   

20.
Fluorescent hyperbranched copolymers (HB‐x, x = 1–4) with inherent tetraphenylthiophene, triphenylamine (TPA) and quinoline (Qu) moieties were prepared to study the influence of the TPA branching point on the thermal and the spectral stability. All the HB‐x copolymers exhibited high glass transition temperatures (Tgs = 245–315 °C) with the detected values increasing with the increasing branching TPA content in the HB‐x. The solid HB‐x films possess high emission efficiency with the resulting quantum yields (?Fs) in the ranges of 0.72–0.74. More importantly, the HB‐x copolymers and the derived light‐emitting devices exhibit high photoluminescence (PL) and electroluminescence (EL) stability towards thermal annealing at temperatures higher than 200 °C. After annealing at 200 °C (or 300 °C), no change was observed in the respective PL and EL spectra of HB‐1 (or HB‐4) copolymers. The spectral stability was found to correlate with Tg and with the highest branching density, HB‐4 copolymer possesses the highest thermal stability among all HB‐xs and show no EL spectral change after annealing at 300 °C for 4 h. The results indicate that all the branched HB‐x copolymers are promising candidates for the polymer light‐emitting diodes due to their high quantum yield and spectral stability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号