首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel cytotoxic compounds, [Mn(cpt)2], [Zn(tpt)(H2O)2]?DMA?2(H2O) and [Cu(tpt)]?DMA (cpt = 4′‐(4‐carboxyphenyl)‐2,2′:6′,2″‐terpyridine, tpt = 4‐(2,4,6‐tricarboxylphenyl)‐2,2′:6′,2″‐terpyridine, DMA = (CH3)2NH), were isolated and characterized. The structures of these complexes were characterized using single‐crystal X‐ray diffraction. The mode and extent of binding between fish sperm DNA and the complexes were investigated using fluorescence spectroscopy and molecular docking. These results indicate the ability of the complexes to bind to DNA with different binding affinities. The binding of the Zn(II) complex with DNA is stronger than that of the corresponding Cu(II) analogue, which is expected due to the z* effect and geometry. The ability of these complexes to cleave pBR322 plasmid DNA was demonstrated using gel electrophoresis assay, showing that the complexes have effective DNA cleavage activity. In addition, the cytotoxic effects of these complexes were examined on HeLa cells (human cervix epithelia carcinoma cells) in vitro. The three complexes exhibit different cytotoxic effects and decent cancer cell inhibitory rate. This means that the structures and type of metal have a great influence on the activity of these novel complexes.  相似文献   

2.
A new series of neutral isocyanoborato rhenium(I) diimine complexes [Re(CO)3(N^N)(CNBR3)], where N^N=bpy, 4,4′‐Me2bpy, phen, 4,7‐Me2phen, 2,9‐Me2phen, 3,4,7,8‐Me4phen; R=C6F5, C6H5, Cl, 4‐ClC6H4, 3,5‐(CF3)2C6H3, with various isocyanoborate and diimine ligands of diverse electronic and steric nature have been synthesized and characterized. The X‐ray crystal structures of six complexes have also been determined. These complexes displayed intense bluish green to yellow phosphorescence at room temperature in dichloromethane solution. The photophysical and electrochemical properties of these complexes had been investigated. To elucidate the electronic structures and transitions of these complexes, DFT and TD‐DFT calculations have been performed, which revealed that the lowest‐energy electronic transition associated with these complexes originates from a mixture of MLCT [dπ(Re)→π*(N^N)] and LLCT [π(CNBR3)→π*(N^N)] transitions.  相似文献   

3.
Three novel lanthanide complexes [Er (3,4‐DMBA)3(5,5′‐DM‐2,2′‐bipy)(H2O)] ( 1 ); [Tb2 (3,4‐DMBA)6(5,5′‐DM‐2,2′‐bipy)2(H2O)] ( 2 ); [Eu (3,4‐DMBA)3(3,4‐DMHBA)(5,5′‐DM‐2,2′‐bipy)]2 ( 3 ) (3,4‐DMHBA = 3,4‐dimethylbenzoic acid, 5,5′‐DM‐2,2′‐bipy =5,5′‐dimethyl‐2,2′‐bipyridine) were successfully synthesized via conventional solution method at room temperature and structurally characterized by single crystal diffraction. The structures of the complexes 1 – 3 were confirmed on the basis of elemental analysis, coordination titration analysis, IR and XRD. The molecular structures of complexes 2 and 3 are very particular: complex 2 has two same central metal ions but each metal ion has different coordination environment; in structure of the complex 3 , there are eight carboxylic acid ligands coordinated to the central metal ions, which have rarely been reported previously. The thermal decomposition mechanism of complexes 1 – 3 were investigated by the technology of simultaneous TG/DSC‐FTIR. The heat capacities of the complexes were recorded by means of DSC over the range of from 253.15 K to 345.15 K. The thermodynamic parameters, the smoothed values of heat capacities, enthalpy (HT‐H298.15K) and entropy (ST‐S298.15K) were also calculated. The bacteriostatic activities of the complexes were evaluated against Staphylococcus aureus, Escherichia coli and Candida albicans. What's more, the luminescence properties of complexes 2 and 3 were discussed, and their fluorescence lifetimes as well as the quantum yield of the Eu (III) were measured. To elucidate the energy transfer process of complexes 2 and 3, the energy levels of the relevant electronic states have been estimated.  相似文献   

4.
Two heterospin complexes [Cu(NIT3Py)(cda)H2O] · H2O ( 1 ) and [Cu(NIT2Py)(cda)H2O] · H2O · CH3OH ( 2 ) with CuII ions and pyridyl‐substituted nitronyl nitroxide radicals (NITxPy = 2‐(x′‐pyridyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide, x = 3, 2; H2cda = 4‐hydroxy‐pyridine‐2,6‐dicarboxylic acid) were synthesized and characterized structurally and magnetically. The single crystal structures show that the two complexes are both two‐spin complexes, in which the different radicals make the two complexes have different hydrogen bonding interactions to form 2D and 1D supramolecular network for complexes 1 and 2 , respectively. The magnetic measurements indicate that complexes 1 and 2 both exhibit antiferromagnetic interactions between CuII and radicals.  相似文献   

5.
Density functional method has been employed to compare the interaction and adsorption abilities of simple and doped fullerenes with various heteroatoms (Al, B, Si, N, P, and S). Three sulfur‐containing molecules (H2S, SO2, and thiophene) were selected to study of their interactions with fullerenes. These interactions will be important in the design of new sensor, adsorption, and elimination of pollutants and chemical reactions. The calculated adsorption energies (Ead) in the gas phase and solvents (water, using the polarized continuum model) showed that all adsorbates have exothermic interaction with all fullerenes. The maximum Ead values were calculated for aluminum‐doped fullerene (AF) and nitrogen‐doped fullerene (NF), and the adsorption energies in solvent are not so different with those in the gas phase. Natural Bond Orbitals (NBO) calculations showed the complexes of AF and then boron‐doped fullerene (BF) have the highest E2 interaction energies, whereas simple fullerene (F) and phosphorus‐doped fullerene (PF) have the least E2 energies. Population analyses showed that doping by heteroatoms bearing extra electrons reduces the energy gap and this decrease is more than the decrease observed from doping by heteroatoms with electron defect. Moreover, the change in the energy gaps of the complexes, obtained from the density of states (DOSs) plots, showed that these structures could be used in sensor devices. All calculated data confirmed the better adsorption of SO2 by fullerenes versus H2S and thiophene and among all fullerenes, AF and then BF and NF are the best adsorbent for these structures.  相似文献   

6.
Iminosulfane(phosphane)carbon(0) derivatives (iSPCs; Ar3P→C←SPh2(NMe); Ar=Ph ( 1 ), 4‐MeOC6H4 ( 2 ), 4‐(Me2N)C6H4 ( 3 )) have been successfully synthesized and the molecular structure of 3 characterized. Carbone 3 is the first thermally and hydrolytically stable carbone stabilized by phosphorus and sulfur ligands. DFT calculations reveal the electronic structures of 1 – 3 , which have two lone pairs of electrons at the carbon center. First and second proton affinity values are theoretically calculated to be in the range of 286.8–301.1 and 189.6–208.3 kcal mol?1, respectively. Cyclic voltammetry measurements reveal that the HOMO energy levels follow the order of 3 > 2 > 1 and the HOMO of 3 is at a higher energy than those of bis(chalcogenane)carbon(0) (BChCs). The reactivities of these lone pairs of electrons are demonstrated by the C‐diaurated and C‐proton‐aurated complexes. These results are the first experimental evidence of phosphorus‐ and sulfur‐stabilized carbones behaving as four‐electron donors. In addition, the reaction of hydrochloric salts of the carbones with Ag2O gives the corresponding AgI complexes. The resulting silver(I) carbone complexes can be used as carbone transfer agents. This synthetic protocol can also be used for moisture‐sensitive carbone species.  相似文献   

7.
Three mononuclear organotin(IV) complexes supported by Schiff bases have been synthesized. The complexes [(C6H5)2Sn(L)] ( 1 ), [(t‐Bu)2Sn(L)] ( 2 ) and [(t‐Bu)2Sn(L')] ( 3 ) (L, L' = deprotonated Schiff bases) were obtained in good yield by the reaction of Schiff bases H 2 L or H 2 L′ with corresponding diorganotin dichlorides respectively. All newly synthesized complexes were characterized by means of FT‐IR spectroscopy, elemental analysis and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. In addition, single crystal X‐ray diffraction analyses were employed to establish the solid state molecular structures of these complexes. The structures of 1 – 3 reveal that all complexes are mononuclear with a five‐coordinated tin(IV) centre in it. The absorption and emission properties of all complexes have been investigated. Moreover, cytotoxicity and fluorescence cell imaging studies of theses complexes have been performed.  相似文献   

8.
We carried out a series of zeroth‐order regular approximation (ZORA)‐density functional theory (DFT) and ZORA‐time‐dependent (TD)‐DFT calculations for molecular geometries, NMR chemical shifts, nucleus‐independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2(tBuMe2Si)2C4PbL1L2 (L1, L2 = tetrahydrofuran, Pyridine, N‐heterocyclic carbene), and their model molecules. We mainly discussed the Lewis‐base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n‐Huckel rule is applied to the fractional π‐electron number. The calculated 13C‐ and 207Pb‐NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the 13C‐NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the 207Pb‐NMR chemical shifts and J[Pb‐C] but also in the 13C‐NMR chemical shifts of carbons adjacent to the lead atom. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
A comparison was made to investigate the structures and bonding of nickel complex that carry tetrylone and tetrylene ligands [(CO)2Ni‐{E(PH3)2}] ( Ni1E ) and [(CO)2Ni‐{NHEMe}] ( Ni2E ) (E = C to Pb) using quantum chemical calculations at the BP86 level with various basis sets (SVP, TZVPP, TZ2P+). The nature of the Ni–E bonds was analyzed with charge‐ and energy decomposition methods. The structures of tetrylone complexes Ni1E exhibit an interesting trend with the ligands E(PH3)2 are bonded in a tilted orientation relative to the fragment Ni(CO)2. In contrast, the calculated equilibrium structures of complexes Ni2E exhibit the NHEMe ligands (E = C to Sn) bonded in a head‐on way to the Ni(CO)2 fragment, while the bending angle gives the strongest side‐on bonded ligand NHPbMe when E = Pb. The interesting trend of the bond dissociation energy (BDE) is observed for the tetrylone, which has the same trend BDEs compared with tetrylene complexes. The EDA‐NOCV results indicate that the tetrylone ligands {E(PH3)2} in complexes are similar to the tetrylene ligands NHEMe as strong σ‐donors and weak π‐acceptors. The BDEs calculated for the Ni–E bonds in Ni1E and Ni2E show that the effect of bulky ligands may obscure the intrinsic Ni–E bond strength. The bonding analysis shows that the tetrylone ligands in Ni1E may act in a similar fashion to the tetrylene ligands in Ni2E . All complexes Ni1E and Ni2E are suitable targets for synthesis.  相似文献   

10.
Three copper(II) complexes of the polydentate N‐donor ligand [4‐(4,6‐bis(1H‐pyrazol‐1‐yl)‐1,3,5‐triazin‐2‐yl)morpholine] (L) with chlorides, nitrates, and perchlorates as anions, namely, [CuCl2(L)] · 0.5(MeCN) ( 1 ), [Cu(NO3)2(H2O)(L)] · (MeCN) ( 2 ), and [Cu(L)2](ClO4)2 · (MeCN) ( 3 ) were synthesized and structurally characterized by IR, elemental analysis and X‐ray crystallographic analysis. In these complexes, the L ligand binds the copper(II) cation in the tridentate N3 form. The coordination arrangement around the central copper(II) atom is distorted square‐pyramidal in 1 but it is distorted octahedral in 2 and 3 . The interesting noncovalent interactions such as hydrogen bonds, π–π stacking, and anion–π interactions present in the solid‐state structures are discussed. The crystal results reveal that the counteranions play important roles in determining the diverse structures of these complexes. Moreover, the PXRD, TG, DRS, and fluorescence properties of compounds 1 – 3 were investigated.  相似文献   

11.
Propofol (2,6‐diisopropylphenol, PPF) homodimers and their complexes with one water molecule are analyzed by means of mass‐resolved excitation spectroscopy. Using two‐color resonance‐enhanced multiphoton ionization (REMPI) the S1 electronic spectra of these systems are obtained, avoiding fragmentation. Due to the large size of these species, the spectra present a large abundance of lines. Using UV/UV hole‐burning spectroscopy, two isomers of PPF2 are found and the existence of at least three isomers for propofol2(H2O)1 (PPF2W1) is demonstrated. Comparison with the structures calculated at the M06‐2X/6‐311++G(d,p) and M06‐2X/6‐31+G(d) levels of theory shows that the main driving forces in PPF2 are several C? H???π interactions accompanied by dipole–dipole interaction between the OH moieties. On the other hand, there is evidence for the formation of cyclic hydrogen‐bond structures in the heterotrimers. A comparison of the results obtained herein with those of similar systems from previously published studies follows.  相似文献   

12.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

13.
Two complexes [MnL2 (H2O)2]·2ClO4 (complex 1) and [CuL(H2O)3]·2NO3 (complex 2) (where L = 3,5‐bis(1‐imidazoly) pyridine) were designed and synthesized. The structures of the complexes were characterized by X‐ray crystallography, elemental analyses, and infrared spectrum. The interaction capacity of the complexes with calf thymus DNA has been investigated by UV and fluorescence spectroscopy. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pBR322 plasmid DNA. Efficient binding properties of DNA were established by UV–vis, fluorescence, and gel electrophoresis. The intrinsic binding constants (Kb) were calculated to be 0.1524, 0.1041 for complexes 1–2, respectively. The cytotoxic activity of the two complexes exhibited a higher cytotoxicity against HeLa cell lines and lower cytotoxicity toward the normal cell lines. Flow cytometry demonstrated the cancer cell inhibitory rate of two complexes. Furthermore, computer‐aided molecular docking studies were performed to visualize the binding mode of the drug candidate at the molecular level. Interestingly, complex 1 exhibited a significant cancer cell inhibitory rate than cisplatin and other complexes.  相似文献   

14.
Acrylamide complexes of metal nitrates: [M(O‐OC(NH2)CHCH2)n(H2O)m][NO3]2 (M = Co( 1 ), Ni( 2 ) (n = 6 and m = 0) and Zn( 3 ) (n = 4 and m = 2)) have been determined by using single crystal X‐ray diffraction analysis. All complexes crystallize in the triclinic space group . The structures of 1 and 2 represent octahedral species [M(AAm)6]2+ (AAm = O‐OC(NH2)CHCH2 and M = Co or Ni) and uncoordinated nitrate ions. The structure of 3 involves the octahedral cation [Zn(AAm)4(H2O)2]2+ in which the Zn2+ environment includes oxygen atoms of four acrylamide and two water molecules that are stabilized using ionic nitrate ions. The observations of the solid‐state IR spectroscopic vibrational frequencies of these acrylamide complexes are in agreement with the crystal structures.  相似文献   

15.
Two two‐dimensional supramolecular copper(II) and cobalt(III) complexes, Cu(L1)2 ( 1 ; HL1 = 2‐hydroxy‐3‐methoxybenzaldehyde oxime) and [Co(L2)2]2⋅2CH3COOCH2CH3 ( 2 ; HL2 = 1‐(2‐{[(E )‐3‐methoxy‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), have been synthesized via complexation of Cu(II) nitrate trihydrate and Co(II) acetate tetrahydrate with HL. A plausible reaction mechanism for the formation of HL1 is proposed. HL was synthesized and characterized using infrared, 1H NMR and 13C NMR spectra, as well as elemental analysis. Complexes 1 and 2 were investigated using single‐crystal X‐ray diffraction and have a 2:1 ligand‐to‐metal ratio. Different geometric features of both complexes are observed. In their crystal structures, 1 and 2 form infinite two‐dimensional structures and 2 forms a three‐dimensional supramolecular framework. Electron paramagnetic resonance spectra of 1 and 2 were also investigated. Moreover, thermal and electrochemical properties and antimicrobial activity of 2 were also studied. In addition, the calculated HOMO and LUMO energies show the character of complex 1 .  相似文献   

16.
The reaction of α‐keto‐stabilized diphosphine ylides [Ph2P(CH2)nPPh2═C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with dibromo(1,5‐cyclooctadiene) palladium(II)/platinum(II) complexes, [Pd/PtBr2(cod)], in equimolar ratio gave the new cyclometalated Pd(II) and Pt(II) complexes [Br2Pd(κ2‐Y1)] ( 1 ), [Br2Pt(κ2‐Y1)] ( 2 ), [Br2Pd(κ2‐Y2)] ( 3 ) and [Br2Pt(κ2‐Y2)] ( 4 ). These compounds were screened in a search for novel antibacterial agents and characterized successfully using Fourier transfer infrared and NMR (1H, 13C and 31P) spectroscopic methods. Also, the structures of complexes 1 and 2 were characterized using X‐ray crystallography. The results showed that the P,C‐chelated complexes 1 and 2 have structures consisting of five‐membered rings, while 3 and 4 have six‐membered rings, formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal centre. Also, a theoretical study of the structures of complexes 1 – 4 was conducted at the BP86/def2‐SVP level of theory. The nature of metal–ligand bonds in the complexes was investigated using energy decomposition analyses (EDA) and extended transition state combined with natural orbitals for chemical valence analyses. The results of EDA confirmed that the main portions of ΔEint, about 57–58%, in the complexes are allocated to ΔEelstat.  相似文献   

17.
Four novel metal complexes [Cd(L)Cl](BF4)·H2O ( 1 ), [Cd(L)Br]2[CdBr4]·2H2O ( 2 ), [Cu(L)Br]Br ( 3 ), and [Cu(L)](NO3)2 ( 4 ) were prepared by the reactions of ligand N1‐(2‐aminoethyl)‐N1‐(2‐imidazolethyl)‐ethane‐1,2‐diamine (L) with metal salts under different reaction conditions. All of these complexes exhibit 1D chains, but different structures. The results showed that the pH value of the reaction solution and counter ions have remarkable impact on the structure of the complexes. Furthermore, complexes 1 and 2 represent fluorescence properties in the solid state at room temperature.  相似文献   

18.
Six new arenetelluronic triorganotin esters, namely (R3Sn)4[ArTe(μ‐O)(OH)O2)]2 (Ar = Ph, R = Me: 1 , R = Ph: 2 ; Ar = 3‐Me‐Ph, R = Me: 3 , R = Ph: 4 , Ar = 3‐Cl‐Ph, R = Me: 5 , R = Ph: 6 ), were prepared by treating arenetelluronic acids with the corresponding R3SnCl (R = Me, Ph) with potassium hydroxide in methanol. All complexes were characterized by elemental analysis, FT‐IR, NMR (1H, 13C, 119Sn) spectroscopy, and X‐ray crystallography. The structural analyses indicate that these complexes are isostructural as Sn4Te2 moiety, in which the Te22‐O)2 units are situated in the center and each Te atom is coordinated with two OSnR3 groups on the side. Complexes 1 , 3 , and 5 show one‐dimensional chain and two‐dimensional network supramolecular structures by intermolecular C H···O or C H···Cl interactions. The antitumor activities of these complexes reveal that most arenetelluronic triorganotin esters have powerful antitumor activities with certain regularity.  相似文献   

19.
Whether traveling wave ion mobility‐mass spectrometry (IM‐MS), B3LYP/LanL2DZ density functional theory, and ion size scaled Lennard‐Jones (LJ) collision cross sections (CCS) from the B3LYP optimized structures could be used to determine the type of Zn(II) coordination by the oligopeptide acetyl‐His1‐Cys2‐Gly3‐Pro4‐Tyr5‐His6‐Cys7 (amb5) was investigated. The IM‐MS analyses of a pH titration of molar equivalents of Zn(II):amb5 showed that both negatively and positively charged complexes formed and coordination of Zn(II) increased as the His and Cys deprotonated near their pKa values. The B3LYP method was used to generate a series of alternative coordination structures to compare with the experimental results. The method predicted that the single negatively charged complex coordinated Zn(II) in a distorted tetrahedral geometry via the 2His‐2Cys substituent groups, whereas, the double negatively charged and positively charged complexes coordinated Zn(II) via His, carbonyl oxygens and the C‐terminus. The CCS of the B3LYP complexes were calculated using the LJ method and compared with those measured by IM‐MS for the various charge state complexes. The LJ method provided CCS that agreed with five of the alternative distorted tetrahedral and trigonal bipyramidal coordinations for the doubly charged complexes, but provided CCS that were 15 to 31 Å2 larger than those measured by IM‐MS for the singly charged complexes. Collision‐induced dissociation of the Zn(II) complexes and a further pH titration study of amb5B, which included amidation of the C‐terminus, suggested that the 2His‐2Cys coordination was more significant than coordinations that included the C‐terminus. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A novel azo dye ligand formed by the coupling of L‐histidine with 2‐hydroxy‐1‐naphthaldyhide(H2L) and its Ru3+, Pd2+ and Ni2+ nano‐sized complexes were obtained and described by elemental analysis, TGA, magnetic moment measurements, molar conductance, UV‐Vis, ESR, X‐ray powder diffraction, IR, SEM, TEM, 1H‐nmr, 13C‐nmr, and EI‐mass spectral studies. The analytical results and spectral studies detected that the H2L ligand acts as dibasic tetradentate via aldehyde oxygen, azo nitrogen and deprotonated OH and COOH groups. The data showed the paramagnetic Ru3+ complex has octahedral geometry while Pd2+ and Ni2+ have square planar structures. The molar conductance measurements display all complexes are nonelectrolyte. The crystallinity, morphology and average particle size data revealed the prepared complexes were formed in the Nano scale. The average particle size as calculated from TEM images are found to be 13.72, 64.52 and 115.00 nm for Ru3+, Pd2+ and Ni2+ chelates, respectively. The catalytic activities of these compounds were checked for oxidation of 2‐amino phenol to 2‐amino‐3H phenoxazine‐3‐one as heterogeneous catalysts. A 96, 31 and 21% catalytic conversion are found when using Ru(III), Pd(II) and Ni(II) complexes respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号