首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two new poly(phenylene vinylene)s (PPVs) carrying electron‐donating triphenylamine or carbazole and electron‐deficient quinoxaline units were synthesized and characterized. Their properties were compared with those of PPV containing only quinoxaline unit. The two polymers showed PL maximum at 501–510 in solution and 533–540 in thin film. Because of the presence of electron donor and acceptor units they displayed strong intramolecular charge transfer (ICT) effects; hence, low‐photoluminescence quantum yields. The polymers showed reversible electrochemical reduction with electron affinity of 2.75 eV and irreversible oxidation with ionization potential of 5.10–5.24 eV. Single‐layer LED of configuration ITO/PEDOT/polymer/Al showed low turn‐on voltage at 5 V, but limited brightness of 50–60 cdm?2. The electroluminescence maximum was voltage‐tunable varying from 500 to 542 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2367–2378, 2008  相似文献   

2.
A new series of alkoxy‐substituted poly(p‐phenylene 1,3,4‐oxadiazole)s modified by the insertion of small percentages of various comonomers were synthesized through the precursor polyhydrazides. The comonomers used contained trans double bonds or meta‐alkoxy‐substituted aromatic rings to improve the solubility of the final polymers. The synthesized copolymers were chemically characterized by 1H NMR and Fourier transform infrared spectroscopy. In some cases, the copolymers really showed improved solubility in organic solvents. The 15N solid‐state NMR technique was applied to examine the degree of conversion from the precursor polyhydrazides to the final polymers, which determined the effective conjugated length in the target polyoxadiazoles. Thermal stability and structural characteristics of all the polymers as well as a preliminary investigation on the optical properties of polyoxadiazoles are also reported. The copolymers retained high absorbance in the UV region and high transmission in the whole telecommunication range. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3916–3928, 2003  相似文献   

3.
Summary: Low‐bandgap π‐conjugated polymers that consist of alkyl thiophene/alkoxy phenylene and 2,3‐diphenylthieno[3,4‐b]pyrazine units have been prepared in high yields by a Sonogashira polycondensation. The copolymers are characterized by NMR, IR, UV, GPC, and elemental analysis. Thin films of the polymers P1 , P2 , and P3 exhibit an optical bandgap of ≈1.57–1.60 eV. Under simulated AM 1.5 conditions P2/PCBM devices on polyester foil provide a short circuit current of ISC = 10.72 mA · cm−2, an open circuit voltage of Voc = 0.67 V, and a power conversion efficiency of 2.37%.

Schematic of the photovoltaic device made from the polymers synthesized here.  相似文献   


4.
5.
6.
Head‐to‐tail regioregular poly(3‐heptanoylthiophene) (PHOT) was synthesized by Ni‐catalyzed polycondensation of the 2,2‐dimethyl‐1,3‐propanediol‐protected Grignard monomer followed by deprotection. Cyclic voltammetric (CV) study demonstrates that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PHOT are 0.5 eV lower in energy than those of the head‐to‐tail poly(3‐hexylthiophene) (HT‐P3HT). Their optical band gaps are essentially the same. Incomplete photoluminescence (PL) quenching was observed in thin films of the 1:1 blend of PHOT and HT‐P3HT. PHOT displayed a glass transition at ~269 °C and decomposed at ~300 °C according to differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Wide‐angle X‐ray diffraction (WAXD) study showed that PHOT exists in a not highly ordered state in solid films especially in the π‐stacking direction. Only p‐channel activity was observed in field‐effect transistors (FETs) for PHOT. The hole mobility was on the order of 10?4 cm2 V?1 s?1. Photovoltaic devices with an active layer of 1:1 blend of PHOT and PC71BM had a power conversion efficiency (PCE) of ~0.5%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
We describe a comprehensive model for the optical properties of pristine films of poly‐(3‐hexylthiophene) (P3HT). The presented model is anisotropic with the optical axis normal to the substrate plane, which is consistent with previous x‐ray diffraction studies that show preferential edge‐on packing of the polymer chains on the substrate. Peak locations and spacings are defined using a Huang‐Rhys vibronic progression consistent with known phonon energies. We demonstrate that the model fits variable‐angle spectroscopic ellipsometry and normal‐incidence transmission data well, and accurately predicts angle‐ and polarization‐dependent transmission and reflection data. The spectral features of the optical constants used in the model are in excellent agreement with published spectroscopic data on P3HT. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
New monomers containing 4‐cyanophenyl (–PhCN) groups attached to a thieno[3,2‐b]thiophene (TT) or dithieno[3,2‐b:2′,3′‐d]thiophene (DTT) structure were synthesized and characterized as 4‐(2,5‐dibromothieno[3,2‐b]thiophen‐3‐yl)benzonitrile (Br–TT–PhCN) or 4,4′‐(2,6‐dibromodithieno[3,2‐b:2′,3′‐d]thiophene‐3,5‐diyl)dibenzonitrile (Br–DTT–PhCN). The Suzuki coupling of 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol)ester and the Br–TT–PhCN or Br–DTT–PhCN monomer was utilized for the syntheses of novel copolymers poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3‐(4′‐cyanophenyl)thieno[3,2‐b]thiophene‐2,5‐diyl} (PFTT–PhCN) and poly{9,9‐dioctylfluorene‐2,7‐diyl‐alt‐3,5‐bis(4′‐cyanophenyl)dithieno[3,2‐b:2′,3′‐d]thiophene‐2,6‐diyl} (PFDTT–PhCN), respectively. The photophysical, electrochemical, and electroluminescent (EL) properties of these novel copolymers were studied. Their photoluminescence (PL) exhibited the same emission maximum for both copolymers in solution. Red‐shifted PL emissions were observed in the thin films. The PL emission maximum of PFTT–PhCN was more significantly redshifted than that of PFDTT–PhCN, indicating more pronounced excimer or aggregate formation in PFTT–PhCN. The ionization potential (HOMO level) and electron affinity (LUMO level) values were 5.54 and 2.81 eV, respectively, for PFTT–PhCN and were 5.57 and 2.92 eV, respectively, for PFDTT–PhCN. Polymer light‐emitting diodes (LEDs) with copolymer active layers were fabricated and studied. Anomalous behavior and memory effects were observed from the current–voltage characteristics of the LEDs for both copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2629–2638  相似文献   

9.
Novel alternating conjugated copolymers ( P1–P6 ) consisting of an electron‐deficient benzothiadiazole and a variety of electron‐rich thiophene‐arene‐thiophene units were synthesized by palladium‐catalyzed polycondensations (Stille and Suzuki reactions), aiming at processable materials with a reduced optical band gap. The structures of P1–P6 were confirmed by 1H NMR and 13C NMR, and their molecular weights were determined by size exclusion chromatography. In the Suzuki polycondensation, the role of the catalyst [Pd(PPh3)4 and Pd(OAc)2] on the resulting molecular weight was investigated. Pd(OAc)2 enhances the molecular weight of the polymers for both thiophene and phenylene bis‐boronic esters as compared with Pd(PPh3)4. The optical properties of the polymers were examined in solution and the solid state. The polymers with n‐octyl substituents ( P1 , P4 , P5 , and P6 ) on the thiophene rings possessed less‐planar structures as a result of torsional steric hindrance, and their absorption spectra appeared blueshifted as compared with their unsubstituted analogues ( P2 and P3 ). The electrochemical properties of the polymers were studied using cyclic voltammetry. Although the alkyl substitution affects the oxidation potential, only marginal differences in the reduction potentials were observed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2360–2372, 2002  相似文献   

10.
We synthesized a novel low‐band‐gap, conjugated polymer, poly[4,7‐bis(3′,3′‐diheptyl‐3,4‐propylenedioxythienyl)‐2,1,3‐benzothiadiazole] [poly(heptyl4‐PTBT)], consisting of alternating electron‐rich, diheptyl‐substituted propylene dioxythiophene and electron‐deficient 2,1,3‐benzothiadiazole units, and its photovoltaic properties were investigated. A thin film of poly(heptyl4‐PTBT) exhibited an optical band gap of 1.55 eV. A bulk‐heterojunction solar cell with indium tin oxide/poly(3,4‐ethylenedioxythiophene)/poly(heptyl4‐PTBT): methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) (1:4)/LiF/Al was fabricated with poly(heptyl4‐PTBT) as an electron donor and PCBM as an electron acceptor and showed an open‐circuit voltage, short‐circuit current density, and power conversion efficiency of 0.37 V, 3.15 mA/cm2, and 0.35% under air mass 1.5 (AM1.5G) illumination (100 mW/cm2), respectively. A solid‐state, dye‐sensitized solar cell with a SnO2:F/TiO2/N3 dye/poly(heptyl4‐PTBT)/Pt device was fabricated with poly(heptyl4‐PTBT) as a hole‐transport material. This device exhibited a high power conversion efficiency of 3.1%, which is the highest power conversion efficiency value with hole‐transport materials in dye‐sensitized solar cells to date. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1394–1402, 2007  相似文献   

11.
Polyfluorene PF?γCD rotaxane copolymer, composed of randomly distributed 9,9‐dioctylfluorene, methyltriphenylamine (electron‐donating) and 9‐dicyanomethylenefluorene complexed with γ‐cyclodextrin (γCD) (electron‐accepting) structural units, has been synthesized by Suzuki cross‐coupling reaction. The chemical structures were proved by FTIR and 1H NMR spectroscopy. The surface morphology, thermal, optical, electrochemical behavior, and adhesion characteristics of the obtained rotaxane copolymer have been investigated and compared with those of the nonrotaxane counterpart ( PF ). Relatively high fluorescence efficiency, almost identical normalized absorbance maximum in solution and solid‐state of PF?γCD rotaxane copolymer, and a more uniform and smoother surface with lower adhesion forces provides the role of γCD encapsulation on the lower aggregation propensity. PF?γCD and PF copolymers exhibit n‐ and p‐doping processes and blue‐light emission in the film state. The optical and electrochemical band gaps (ΔEg), as well as the highest occupied molecular orbital/lowest unoccupied molecular orbital positions in an energetic diagram indicate that both copolymers are promising blue‐emitting electroluminescent materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
We report here the synthesis via Suzuki polymerization of two novel alternating polymers containing 9,9‐dioctylfluorene and electron‐withdrawing 4,4′‐dihexyl‐2,2′‐bithiazole moieties, poly[(4,4′‐dihexyl‐2,2′‐bithiazole‐5,5′‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PHBTzF) and poly[(5,5′‐bis(2″‐thienyl)‐4,4′‐dihexyl‐2,2′‐bithiazole‐5″,5″‐diyl)‐alt‐(9,9‐dioctylfluorene‐2,7‐diyl)] (PTHBTzTF), and their application to electronic devices. The ultraviolet–visible absorption maxima of films of PHBTzF and PTHBTzTF were 413 and 471 nm, respectively, and the photoluminescence maxima were 513 and 590 nm, respectively. Cyclic voltammetry experiment showed an improvement in the n‐doping stability of the polymers and a reduction of their lowest unoccupied molecular orbital energy levels as a result of bithiazole in the polymers' main chain. The highest occupied molecular orbital energy levels of the polymers were ?5.85 eV for PHBTzF and ?5.53 eV for PTHBTzTF. Conventional polymeric light‐emitting‐diode devices were fabricated in the ITO/PEDOT:PSS/polymer/Ca/Al configuration [where ITO is indium tin oxide and PEDOT:PSS is poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid)] with the two polymers as emitting layers. The PHBTzF device exhibited a maximum luminance of 210 cd/m2 and a turn‐on voltage of 9.4 V, whereas the PTHBTzTF device exhibited a maximum luminance of 1840 cd/m2 and a turn‐on voltage of 5.4 V. In addition, a preliminary organic solar‐cell device with the ITO/PEDOT:PSS/(PTHBTzTF + C60)/Ca/Al configuration (where C60 is fullerene) was also fabricated. Under 100 mW/cm2 of air mass 1.5 white‐light illumination, the device produced an open‐circuit voltage of 0.76 V and a short‐circuit current of 1.70 mA/cm2. The fill factor of the device was 0.40, and the power conversion efficiency was 0.52%. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1845–1857, 2005  相似文献   

13.
A series of alternating copolymers of electron‐rich arylamine and electron‐deficient 2,1,3‐benzothiadiazole (BT), PV‐BT, DP‐BT, and TP‐BT, were synthesized by Heck coupling reaction. UV–vis absorption and fluorescence spectra show that the copolymerization of electron‐rich diphenylamine (DP), triphenylamine (TP), MEH‐PV (PV), and electron‐deficient BT results in low‐bandgap conjugated polymers. Within the three copolymers of PV‐BT, DP‐BT, and TP‐BT, TP‐BT possesses the highest hole mobility of 4.68 × 10? 5 cm2/V, as determined from the space charge limited current (SCLC) model. The bulk heterojunction‐typed polymer solar cells (PSCs) were fabricated with the blend of the copolymers and PCBM as the photosensitive layer. The power conversion efficiencies (PCE) of the PSCs based on PV‐BT, DP‐BT, and TP‐BT reached 0.26%, 0.39%, and 0.52%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The results indicate that TP‐BT is a promising photovoltaic polymer for PSCs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3861–3871, 2007  相似文献   

14.
Four novel conjugated polymers containing the eumelanin‐inspired indole core have been successfully synthesized using common cross coupling reactions. These polymers differed by the arylene and the carbon–carbon bond linkage. Optoelectronic experiments of these polymers suggest that the ethynylene linkage contributed to the red‐shifted absorption spectra and blue‐shifted emission spectra when compared to the vinylene linkage polymers. Furthermore, the optical bandgaps of the poly(indoylenearyleneethynylene)s (PIAEs) were smaller compared to the poly(indoylenearylenevinylene)s (PIAVs). Surprisingly, the HOMOs of these polymers were less affected by the nature of the carbon–carbon linkage. However, the LUMOs of the PIAEs were lower in comparison to the PIAVs. These eumelanin‐inspired PIAEs and PIAVs are good fluorophores with fluorescence quantum yields ranging from 0.12 to 0.67 and have good thermal stability for applications such as in organic light‐emitting diodes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 457–463  相似文献   

15.
A soluble charge‐transfer type poly(aryleneethynylene), PAE‐AzaBzTdz , consisting of a highly electron‐accepting azabenzothiadiazole unit was prepared in 99% yield by palladium‐catalyzed polycondensation between 4,7‐dibromo‐2,1,3‐azabenzothiadiazole ( Br2‐AzaBzTdz ) and 1,4‐diethynyl‐2,5‐didodecyloxybenzene. PAE‐AzaBzTdz showed a number‐average molecular weight, Mn, of 6000 in gel‐permeation chromatography analysis and had good thermal stability as measured by TGA. UV–vis spectrum of PAE‐AzaBzTdz exhibited an absorption peak at 529 nm in chloroform, and the absorption peak shifted to a longer wavelength (601 nm) in film. Addition of MeOH to a CHCl3 solution of PAE‐AzaBzTdz led to aggregation of the polymer to form stable colloidal particles. Results of filtration experiments using 0.2 and 0.02 μm membranes supported aggregation of the polymer. Addition of trifluoroacetic acid (TFA) to a chloroform solution of PAE‐AzaBzTdz led to a red‐shift of the UV–vis peak from 529 to 640 nm. An X‐ray diffraction pattern of powdery PAE‐AzaBzTdz indicated that the polymer assumed a layer‐to‐layer stacked structure with an interlayer distance of 3.4 Å in the solid state. An X‐ray diffraction pattern of cast film of PAE‐AzaBzTdz revealed that the polymer molecules in the cast film were ordered on the surface of Pt plate with the dodecyl side chain oriented toward the surface of the Pt plate. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2975–2982, 2008  相似文献   

16.
An easy synthetic procedure for soluble poly[3‐(4‐alcoxyphenyl)thiophene]s is reported. The polymers present a high regioregularity degree as determined by both UV–vis spectra and 1H and 13C NMR analysis. Furthermore, X‐ray powder diffraction analysis performed on films of the polymers suggests a π‐stacked packing structure of the macromolecules. Electrical characterization was performed on one of the synthesized polythiophenes on both undoped and doped (with FeCl3 or iodine) films. The conductivity and charge‐carrier mobility were assessed by current–voltage and field effect measurements. Well‐structured polymer films were obtained simply via spin coating from chloroform solutions and without the need of further processing, unlike other regioregular polythiophenes reported in the literature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1758–1770, 2007  相似文献   

17.
Two novel acceptors of benzo[c][1,2,5]thiadiazole and quinoxaline with conjugated dithienylbenzothiadiazole pendants were first designed and synthesized for building efficient photovoltaic copolymers. Based on benzo[1,2‐b;3,4‐b′]dithiophene donors and the two acceptors, two new copolymers have been prepared by Stille coupling polymerization. The resulting copolymers were characterized by 1H NMR, gel permeation chromatography, and thermogravimetric analysis. UV–Visible absorption and cyclic voltammetry measurements indicated that the two copolymers possessed strong and broad absorption in the range of 300–700 nm, and deep‐lying energy levels of highest occupied molecular orbitals. The polymer photovoltaic devices based on benzo[c][1,2,5]thiadiazole‐based copolymer/phenyl‐C71‐butyric acid methyl ester exhibited a power conversion efficiency of 2.42%, attributed to its relatively better light‐harvesting ability and active film morphology. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 668–677  相似文献   

18.
Conjugated graft copolymers consisting of a poly(3‐hexylthiophene) (P3HT) backbone and poly(9,9'‐dioctylfluorene) side chains (PF) with different grafting degrees were synthesized by the CuAAC reaction. The properties of these materials were studied by UV‐Vis and fluorescence spectroscopy. The former technique provides insight in their self‐assembly, while the latter is used to study the energy funneling from the PF side chains to the P3HT backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1252–1258  相似文献   

19.
The 3‐ and 4‐aminophenylacetylenes protected by t‐butoxycarbonyl (t‐Boc) and 9‐fluorenylmethoxycarbonyl (Fmoc) groups ( 3a – 6a ) were synthesized and polymerized using [(nbd)RhCl]2 ( 1 ) and [(nbd)Rh+‐η6‐PhB?Ph3] ( 2 ) catalysts. The t‐Boc‐containing polymers [poly( 3a ) and poly( 4a )] were obtained in high yield (82–91%). Among the Fmoc‐protected monomers, the para‐derivative polymerized well [poly( 6a ); yield = 85–94%], whereas its meta‐substituted analogue did not afford high molecular weight polymer in good yield [poly( 5a ); yield = 10–15%]. The use of KN(SiMe3)2 as a cocatalyst in conjunction with 1 led to a dramatic increase in the molecular weight of the polymers. The acid‐ and base‐catalyzed removal of the t‐Boc and the Fmoc groups, respectively, generated primary amine‐containing polymers [poly( 3b )–poly( 6b )] which cannot be obtained directly by the polymerization of the corresponding monomers. The solubility characteristics of the polymers bearing protected amino groups were quite different from those of the unprotected ones, the former being soluble in polar solvents, whereas the latter displayed poor solubility even in polar protic or highly polar aprotic solvents. The attempts to accomplish the free‐standing membrane fabrication by solution casting were successful only for poly( 3a ), and an augmentation in the gas permeability and CO2/N2 permselectivity was discerned in comparison with the unsubstituted poly(phenylacetylene) and poly(mt‐butyldimethylsiloxyphenylacetylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1853–1863, 2009  相似文献   

20.
Rigid‐rod poly(4′‐methyl‐2,5‐benzophenone) macromonomers were synthesized by Ni(0) catalytic coupling of 2,5‐dichloro‐4′‐methylbenzophenone and end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. The macromonomers produced were labile to nucleophilic aromatic substitution. The molecular weight of poly(4′‐methyl‐2,5‐benzophenone) was controlled by varying the amount of the end‐capping agent in the reaction mixture. Glass‐transition temperatures of the macromonomers increased with increasing molecular weight and ranged from 117 to 213 °C. Substitution of the macromonomer end groups was determined to be nearly quantitative by 1H NMR and gel permeation chromatography. The polymerization of a poly(4′‐methyl‐2,5‐benzophenone) macromonomer [number‐average molecular weight (Mn) = 1.90 × 103 g/mol; polydispersity (Mw)/Mn = 2.04] with hydroxy end‐capped bisphenol A polyaryletherketone (Mn = 4.50 × 103 g/mol; Mw/Mn = 1.92) afforded an alternating multiblock copolymer (Mn = 1.95 × 104 g/mol; Mw/Mn = 6.02) that formed flexible, transparent films that could be creased without cracking. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3505–3512, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号