首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A novel phosphorus‐containing trifunctional novolac (dopotriol) was synthesized through the addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide and rosolic acid. The structure of dopotriol was confirmed with NMR spectroscopy and elemental analyses. The dopotriol was blended with phenol novolac in the ratios of 10/0, 8/2, 6/4, 4/6, 2/8, and 0/10 to serve as a curing agent for diglycidyl ether of bisphenol A. Thermal properties, such as the glass‐transition temperature, thermal decomposition temperature, and flame retardancy, moisture absorption, and dielectric properties of the cured epoxy resins were evaluated. The activity and activation energy of curing were studied with the methods of Kissinger and Ozawa by dynamic differential scanning calorimetry scans. The glass‐transition temperatures of the cured epoxy resins were 138–159 °C, increasing with the phosphorus content. This is rarely seen in the literature after the addition of a flame‐retardant element. The flame retardancy increased with the phosphorus content, and a UL‐94 V‐0 grade was achieved with a phosphorus content of 1.87%. Similar dielectric properties and moisture absorption were observed for these phosphorus‐containing epoxy resins, and this implied that the addition of phosphorus to epoxy did not affect the dielectric properties and moisture absorption. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2862–2873, 2005  相似文献   

2.
Boron‐containing novolac resins were synthesized by the modification of a commercial novolac resin with different contents of bis(benzo‐1,3,2‐dioxaborolanyl)oxide. These novolac resins were crosslinked with diglycidyl ether of bisphenol A (DGEBA), and their thermal, thermodynamomechanical, and flame‐retardant properties were evaluated. The boron‐containing novolac resins were less thermally stable than the unmodified novolac resin. Their modification degree and DGEBA content were related to the crosslinking density of the materials. The boron‐containing novolac resins generated boric acid at high temperatures and gave an intumescent char that slowed down the degradation and prevented it from being total. They also showed good flame‐retardant properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1701–1710, 2006  相似文献   

3.
A new diepoxide and a new diamine, both bearing bis‐(9,10‐dihydro‐9‐oxa‐10‐oxide‐10‐phosphaphenanthrene‐10‐yl‐)‐substituted methylene linkages, were prepared through the reaction of 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide with benzophenone derivatives via a simple addition reaction followed by a dehydration reaction. These two compounds were used as monomers for preparing cured epoxy resins with high phosphorus contents. The resultant epoxy resins showed high glass‐transition temperatures (between 131 and 196 °C). All of the cured epoxy resins exhibited high thermal stability, with 5% weight loss temperatures over 316 °C, and excellent flame retardancy, with limited oxygen index values of 37–50. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 359–368, 2002  相似文献   

4.
Novel halogen‐free compounds [9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane/N‐β‐(aminoethyl)‐γ‐aminopropyl methyl dimethoxysilane (DOPO–VMDMS–NMDMS)] that simultaneously contain phosphorus, nitrogen, and silicon have been synthesized through the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide (DOPO), vinyl methyl dimethoxysilane (VMDMS), and N‐β‐(aminoethyl)‐γ‐aminopropyl methyl dimethoxysilane (NMDMS). The chemical structure and properties of DOPO–VMDMS–NMDMS have been investigated with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, phosphorous nuclear magnetic resonance, and thermogravimetric analysis (TGA). These synthesized flame retardants have been blended with a poly[2,2‐propane‐(bisphenol) carbonate]/acrylonitrile butadiene styrene (PC/ABS) alloy. The flame‐retardant properties of these mixture samples have been estimated with the limiting oxygen index (LOI), and the thermal stability has been characterized with TGA. The LOI value of PC/ABS/DOPO–VMDMS–NMDMS is enhanced up to 27.2 vol % from 21.2 vol %, and the char yield is also improved slightly (from 12 to 17%) with 2.8 wt % phosphorus, 3.0 wt % silicon, and 0.5 wt % nitrogen (at a 30 wt % loading of DOPO–VMDMS–NMDMS). The results show that there is a synergistic effect of the elements phosphorus, silicon, and nitrogen on the flame retardance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1542–1551, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号