共查询到20条相似文献,搜索用时 15 毫秒
1.
V. I. Bondar B. D. Freeman I. Pinnau 《Journal of Polymer Science.Polymer Physics》1999,37(17):2463-2475
The solubilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n‐C4H10 were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether–polyamide segmented block copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as the hard polyamide phase. Sorption isotherms are linear for the least soluble gases (He, H2, N2, O2, and CH4), convex to the pressure axis for more soluble penetrants (CO2, C3H8, and n‐C4H10) and slightly concave to the pressure axis for ethane. These polymers exhibit high CO2/N2 and CO2/H2 solubility selectivity. This property appears to derive mainly from high carbon dioxide solubility, which is ascribed to the strong affinity of the polar ether linkages for CO2. As the amount of the polyether phase in the copolymers increases, gas solubility increases. The solubility of all gases is higher in polymers with less polar constituents, PTMEO and PA12, than in polymers with more polar PEO and PA6 units. CO2/N2 and CO2/H2 solubility selectivity, however, are higher in polymers with higher concentrations of polar repeat units. The sorption data are complemented with physical characterization (differential scanning calorimetry, elemental analysis, and wide angle X‐ray diffraction) of the various block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2463–2475, 1999 相似文献
2.
Simultaneous measurements of microscopic infrared dichroism, mesoscale deformation, and macroscopic stress have been made for a microphase‐separated film of poly(ether‐block‐amide) 4033 during uniaxial stretching at temperatures between 30 and 91 °C, well below the melting point of the hard polyamide‐12 (PA) domains. Before the onset of dramatic microstructural alterations, the true stress–strain relationship on the mesoscale can be described with an interpenetrating network model, and poly(tetramethylene oxide) (PTMO) soft segments undergo affine deformation. Beyond a threshold strain at which stress from the soft network becomes larger than that from the hard network, plastic deformation occurs in the hard PA domains, and this is accompanied by the downward derivations of the true stress and molecular orientation of PTMO blocks from the model predictions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1161–1167, 2005 相似文献
3.
Sung‐Wook Choi Yongwoo Kim In Woo Cheong Jung‐Hyun Kim 《Macromolecular rapid communications》2008,29(2):175-180
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.
4.
5.
V. I. Bondar B. D. Freeman I. Pinnau 《Journal of Polymer Science.Polymer Physics》2000,38(15):2051-2062
The permeation properties of H2, N2, and CO2 were determined at 35 °C and pressures up to 15 atm in phase‐separated polyether‐b‐polyamide segmented block copolymers. These polymers contain poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon‐6 [PA6] or nylon‐12 [PA12] as the hard polyamide phase. Extremely high values of polar (or quadrupolar)/nonpolar gas selectivities, coupled with high CO2 permeability coefficients, were observed. CO2/H2 selectivities as high as 9.8 and CO2/N2 selectivities as high as 56 were obtained in polymers with CO2 permeability coefficients of approximately 220 × 10−10 cm3(STP) cm/(cm2 s cmHg). As the amount of polyether increases, permeability increases. Gas permeability is higher in polymers with less polar constituents, PTMEO and PA12, than in those containing the more polar PEO and PA6 units. CO2/N2 and CO2/H2 selectivities are higher in polymers with higher concentrations of polar groups. These high selectivity values derive from large solubility selectivities in favor of CO2. Because CO2 is larger than H2 and has, therefore, a lower diffusion coefficient than H2, the weak size‐sieving ability of the rubbery polyether phase, which is the locus of most of the gas permeation, also contributes to high CO2/H2 selectivity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2051–2062, 2000 相似文献
6.
7.
《Journal of Polymer Science.Polymer Physics》2018,56(11):855-864
Three stages of elastic behavior were observed during cyclic deformations for poly(ether‐b‐amide) (PEBA) segmented copolymers based on crystalline hard segments of polyamide 12 (PA12) and amorphous soft segments of poly(tetramethylene oxide) (PTMO). The underlying microstructural evolution was characterized by a combination of in situ Fourier transform infrared spectroscopy (FTIR), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS) technologies. The γ–α″ phase transition of crystalline PA12 occurred upon stretching, and the orientation of the α″ phase was less reversible under larger strains. PTMO chain orientation cannot be restored to the initial state, contributing to plastic deformation. Driven by the entropy effect, the strain‐induced crystallization of PTMO can fuse during sample retarding, exerting little influence on the residual strain. For PEBA with a shore D hardness of 35 D, the long period (L) can be restored to the initial L after the sample was unloaded until system fibrillation. The tie molecules between adjacent oriented lamellae can be by drawn out high stress in a PEBA material with a shore D hardness of 40 D, and the relaxation led to a second long period. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 855–864 相似文献
8.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献
9.
Samarendra Maji Suman Kumar Sen Barnali Dasgupta Shyambo Chatterjee Susanta Banerjee 《先进技术聚合物》2009,20(4):384-392
A new cardo diamine monomer 3, 3‐bis‐[4‐{2′trifluoromethyl 4′‐(4″‐aminophenyl) phenoxy} phenyl]‐2‐phenyl‐2, 3‐dihydro‐isoindole‐1‐one ( 4 ) has been synthesized from potentially cheap phenolphthalein as the starting material. This diamine was used for the synthesis of a new poly(ether amide) and two co‐poly(ether amide)s using 4, 4′‐diaminodiphenyl ether (ODA) as co‐monomer by direct solution polycondensation with 5‐t‐butyl iso‐phthalic acid. These new polymers showed inherent viscosities of 0.48–0.62 dL g?1. The resulting poly(ether amide) and co‐poly(ether amide)s were readily soluble in polar aprotic solvents like NMP, DMF, DMAc, DMSO, and pyridine. The polymers have been fully characterized by 1H and 13C NMR, FTIR spectroscopy, and elemental analysis. These polymers showed glass transition temperatures in the range of 267–310°C. Thermogravimetric analysis indicated high thermal stability of these polymers at 5 and 10% weight loss temperature in air above 357°C and 419°C, respectively. The poly(ether amide) films cast from DMAc were flexible with tensile strength up to 91 MPa, elongations at break up to 11%, and modulus of elasticity up to 1.82 GPa. X‐ray diffraction measurements indicate the amorphous nature of the poly(ether amide)s. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
《先进技术聚合物》2018,29(4):1344-1356
Three nanocomposite films based on aramid (poly (ether‐amide), PEA) and multiwall carbon nanotubes (MWCNT) were prepared via solution casting method using 2,7‐bis(4‐aminophenoxy)naphthalene (4) and isophthalic acid (5) containing various amounts of MWCNT (2, 3, 5 wt.%). To comprehensively analyze the properties of the cast films as well as the monomers, different techniques were employed, namely FT‐IR, 1H NMR, X‐ray diffraction, and field emission scanning electron microscopy. Also, thermal and tensile properties of PEA (6) and nanocomposite films were investigated using thermogravimetric analysis and mechanical analysis, respectively. The morphology, thermal, and mechanical properties of nanocomposite films approved that MWCNT had well dispersion in the PEA matrix and showed a synergistic effect on improving all of the investigated properties. Based on the thermogravimetric analysis results, employing MWCNT caused to increase in the char yields from 61 (in the neat PEA) to 66 (in the PEA /MWCNT nanocomposite 5 wt.%) under the nitrogen atmosphere. In comparison to the pristine PEA (426°C), the temperature at 10 losses mass % (T10) was increased from 530°C to 576°C, with 2 to 5 wt.% of MWCNT. Mechanical analysis revealed that the tensile strength and initial modulus were improved by incorporating MWCNT into PEA (81.70–93.40 MPa and 2.10–2.22 GPa, respectively). Electrical conductivity of the PEA/MWCNT nanocomposites was displayed maximum value in the 5 wt.%, showing satisfactory value in many application areas. The X‐ray diffraction technique was employed to study the crystalline structure of the prepared nanocomposite films as well as PEA. In addition, the electrochemical impedance spectroscopy study demonstrated that the prepared nanocomposites had significant impedance improvement in the presence of MWCNTs. 相似文献
11.
Hang Wang Anand S. Badami Abhishek Roy James E. McGrath 《Journal of polymer science. Part A, Polymer chemistry》2007,45(2):284-294
Nanophase‐separated, hydrophilic–hydrophobic multiblock copolymers are promising proton‐exchange‐membrane materials because of their ability to form various morphological structures that enhance transport. A series of poly(2,5‐benzophenone)‐activated, telechelic aryl fluoride oligomers with different block molecular weights were successfully synthesized by the Ni(0)‐catalyzed coupling of 2,5‐dichlorobenzophenone and the end‐capping agent 4‐chloro‐4′‐fluorobenzophenone. These telechelic oligomers (hydrophobic) were then copolymerized with phenoxide‐terminated, disulfonated poly(arylene ether sulfone)s (hydrophilic) by nucleophilic, aromatic substitution to form hydrophilic–hydrophobic multiblock copolymers. High‐molecular‐weight multiblock copolymers with number‐average block lengths ranging from 3000 to 10,000 g/mol were successfully synthesized. Two separate glass‐transition temperatures were observed via differential scanning calorimetry in the transparent multiblock copolymer films when each block length was longer than 6000 g/mol. Tapping‐mode atomic force microscopy also showed clear nanophase separation between the hydrophilic and hydrophobic domains and the influence of the block length as it increased from 6000 to 10,000 g/mol. Transparent and creasable films were solvent‐cast and exhibited moderate proton conductivity and low water uptake. These copolymers are promising candidates for high‐temperature proton‐exchange membranes in fuel cells, which will be reported separately in part II of this series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 284–294, 2007 相似文献
12.
Daewon Lee Seung‐Heon Lee Sangcheol Kim Kookheon Char Jae Hyung Park Yoo Han Bae 《Journal of Polymer Science.Polymer Physics》2003,41(20):2365-2374
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003 相似文献
13.
Jianhua Fang Kazuhiro Tanaka Hidetoshi Kita Ken‐Ichi Okamoto Yasuo Ito 《Journal of Polymer Science.Polymer Physics》2000,38(9):1123-1132
The positron annihilation lifetime (PAL) of a series of copolyimides and copolyamides with microphase‐separated structures was measured to investigate the effects of different hard‐segment polymers on the PAL properties of soft‐segment domains of poly(dimethyl‐siloxane) (PDMS) and poly(ethylene oxide) (PEO). The lifetime (τ3) and intensity (I3) of the long‐lived component are given as a function of the PDMS or PEO content for a series of copolymers, of which the density roughly obeys the additive rule except for the PDMS‐segmented copolyamides. The PDMS‐segmented copolyimides and copolyamides show much smaller I3 values than those estimated from the additive rule. The lifetime distribution of the long‐lived component for the PDMS‐segmented copolyamides is composed of two components. The longer‐lifetime component is attributed to pure PDMS domains, and the shorter‐lifetime component is attributed to the polyamide domains, intermediate phases, and PDMS domains containing small amounts of short amide blocks. Despite the high PDMS content, the latter component is rather large. Thus, the positronium formation in the PDMS domains of the copolyimides and copolyamides is effectively reduced. This can be explained by the combination of the difference in the electron affinity of the PDMS and polyimide or polyamide segments and the incomplete phase separation. The PEO‐segmented copolyimides show much smaller I3 values than those predicted from the additive rule. This is likely attributable to the effects of the intermediate phases. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1123–1132, 2000 相似文献
14.
Harm Veenstra Rene M. Hoogvliet Ben Norder Abe Posthuma De Boer 《Journal of Polymer Science.Polymer Physics》1998,36(11):1795-1804
A microphase separation transition (MST) of a thermoplastic elastomer based on soft segments of poly(tetra methylene oxide) and hard crystalline segments of poly(tetra methylene terephthalate) has been studied by means of rheological measurements, differential scanning calorimetry (DSC), and wide-angle X-ray scattering (WAXS), showing that the MST is entirely caused by melting/crystallization, and that no separate segmental mixing/demixing transition is involved. DSC and WAXS measurements show that melting starts at 190°C, leading to crystal reorganization effects up to above 200°C, and that a gradual decrease in crystallinity occurs from below 210°C up to 224°C, above which temperature no crystals are left. Rheological measurements reveal a wide MST (207–224°C) upon heating, which coincides perfectly with the melting range. From this coincidence together with the Maxwell fluid behavior directly following the MST, it is concluded that melting leads to a one-phase liquid, and that no separate segmental mixing transition occurs. Similar results are obtained upon cooling, indicating that crystallization is the driving force for phase separation and that no separate segmental demixing step precedes crystallization. The wide MST implies a large processing window over which the rheological properties change from highly elastic, with a distinct yield stress, to normal pseudoplastic, enabling application in preparation of structured blends. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1795–1804, 1998 相似文献
15.
Stéphane Jéol Françoise Fenouillot Alain Rousseau Christiane Monnet Karine Masenelli‐Varlot Jean‐François Briois 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):3985-3991
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008 相似文献
16.
Beom Soo Kim Jeffrey S. Hrkach Robert Langer 《Journal of polymer science. Part A, Polymer chemistry》2000,38(8):1277-1282
New degradable poly(ether‐anhydride) networks were synthesized by UV photopolymerization. Dicarboxylated poly(ethylene glycol) (PEG) or poly(tetramethylene glycol) (PTMG) was reacted with an excess of methacrylic anhydride to form dimethacrylated macromers containing anhydride linkages. The percent of conversion for the macromer formation was more than 80% at 60 °C after 24 h. 1H NMR and IR spectroscopies show the presence of anhydride linkages in the macromer. In vitro degradation studies were carried out at 37 °C in PBS with crosslinked polymer networks formed by UV irradiation. All PEG‐based polymers degraded within 2 days, while PTMG‐based polymers degraded by 50% of the initial weight after 14 days. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1277–1282, 2000 相似文献
17.
Dong Ya Yang Chun Pu Hu Sheng Kang Ying 《Journal of polymer science. Part A, Polymer chemistry》2005,43(12):2606-2614
A series of polyester‐based poly(urethane urea) (PUU) aqueous dispersions with well‐defined hard segments were prepared from polyester polyol, 4,4′‐diphenylmethane diisocyanate, dimethylolpropionic acid, 1,4‐butanediol, isophorone diisocyanate, and ethylenediamine. These anionic‐type aqueous dispersions had good dispersity in water and were stable at the ambient temperature for more than 1 year. For these aqueous dispersions, the particle size decreased as the hard‐segment content increased, and the polydispersity index was very narrow (<1.10). Films prepared with the PUU aqueous dispersions exhibited excellent waterproof performance: the amount of water absorption was as low as 5.0 wt %, and the contact angle of water on the surface of this kind of film was as high as 103° (this led to a hydrophobic surface). The water‐resistant property of these waterborne PUU films could be well correlated with some crystallites and ordered structures of the well‐defined hard segments formed by hydrogen bonding between the urethane/urethane groups and urethane/ester groups, as well as the degree of microphase separation between the hard and soft segments in the PUU systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2606–2614, 2005 相似文献
18.
Aromatic poly(1,3,4‐oxadiazole)s and poly(amide‐1,3,4‐oxadiazole)s containing ether sulfone linkages
Sheng‐Huei Hsiao Jiun‐Hsiang Chiou 《Journal of polymer science. Part A, Polymer chemistry》2001,39(13):2271-2286
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001 相似文献
19.
Qinqin Zheng Sixun Zheng 《Journal of polymer science. Part A, Polymer chemistry》2012,50(9):1717-1727
Poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N‐isopropylacrylamide) (PNIPAAm‐b‐PEO‐b‐PNIPAAm) triblock copolymer was synthesized via the reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process with xanthate‐terminated poly(ethylene oxide) (PEO) as the macromolecular chain transfer agent. The successful synthesis of the ABA triblock copolymer inspired the preparation of poly(N‐isopropylacrylamide)‐block‐poly(ethylene oxide) (PNIPAAm‐b‐PEO) copolymer networks with N,N′‐methylenebisacrylamide as the crosslinking agent with the similar approach. With the RAFT/MADIX process, PEO chains were successfully blocked into poly(N‐isopropylacrylamide) (PNIPAAm) networks. The unique architecture of PNIPAAm‐b‐PEO networks allows investigating the effect of the blocked PEO chains on the deswelling and reswelling behavior of PNIPAAm hydrogels. It was found that with the inclusion of PEO chains into the PNIPAAm networks as midblocks, the swelling ratios of the hydrogels were significantly enhanced. Furthermore, the PNIPAAm‐b‐PEO hydrogels displayed faster response to the external temperature changes than the control PNIPAAm hydrogel. The accelerated deswelling and reswelling behaviors have been interpreted based on the formation of PEO microdomains in the PNIPAAm networks, which could act as the hydrophilic tunnels to facilitate the diffusion of water molecules in the PNIPAAm networks. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
20.
Narayan Bhattarai Dong Il Cha Shanta Raj Bhattarai Myung Seob Khil Hak Yong Kim 《Journal of Polymer Science.Polymer Physics》2003,41(16):1955-1964
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003 相似文献