共查询到20条相似文献,搜索用时 15 毫秒
1.
Zbigniew Czech 《先进技术聚合物》2004,15(9):539-543
In this article a new generation of crosslinkers based on multifunctional propyleneimine derivatives involving crosslinking reactions of acrylic pressure‐sensitive adhesives (PSAs) were investigated. Their tack, peel adhesion, and shear strength after crosslinking, as well as their viscosity and pot life were also measured. Crosslinking of PSAs is an established technology used in many industrial manufacturing processes. Their novel applications and technical specifications stimulate continuous research and development into new crosslinkers with very interesting characteristics. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
P. Tordjeman E. Papon J‐J. Villenave 《Journal of Polymer Science.Polymer Physics》2000,38(9):1201-1208
Relevant experiments are essential to clearly understand the role of various molecular (chemical structure, surface energy, composition), experimental (contact time, contact pressure, temperature) or topological (sample roughness and thickness) parameters, on the tack properties of pressure sensitive adhesives (PSA). The “mechano‐optical tack tester” (MOTT) is a novel device that we have developed to provide accurate measurements of both the contact area and the tack strength. The MOTT is designed to apply controlled contact pressures by mean of a quartz prism probe, for determined contact times, onto the surface of PSA samples. The probe is then pulled up at controlled rates while the tearing force (tack strength) and the contact area are plotted versus time. The tack energy is then calculated. Using the MOTT, the influence of various parameters (contact pressure, contact area, sample thickness, …) on the tack properties of PSA samples has been studied. The main result lies in the strong dependence of the tack energy on the sample thickness. This points out that the release energy is close to the interface rather than in the bulk of the PSA films, and is a function of the contact area. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1201–1208, 2000 相似文献
3.
Irina Nam Kyoungjin Ha Kilsung Lee Lee June Kim Changmin Lee Mi Sun Kim Tuwon Chang 《先进技术聚合物》2012,23(8):1181-1186
Increasing image quality in thin‐film transistor liquid crystal displays (TFT‐LCD) is a recognized challenge for electronic companies and specialists working in this area. One of the main problems in TFT‐LCDs is a phenomenon called “light leakage”, affecting black–white contrast and color brightness. It occurs because of a heat‐induced shrinkage and disorientation of the polarizing film of TFT‐LCD, which controls the intensity of the light from the backlight unit. Improvement of the light leakage can be achieved through using a pressure‐sensitive adhesive (PSA) used for assembling the polarizing film onto the TFT‐LCD panel. In this paper, eight acrylic/methacrylic monomers with high glass transition temperature (Tg) were employed for synthesis of the polymers for the adhesive. Effect of structure, Tg, and elasticity modulus of the synthesized polymers on the light leakage was investigated simultaneously for 2.5‐ and 7.0‐in. size samples. We demonstrated that the light leakage can be minimized through two different mechanisms—high stress relaxation of the polymers with low Tg and low modulus and high shrinkage resistance of the polymers with high Tg and high modulus. The results of this work indicate a possibility to develop a universal PSA for polarizing film in TFT‐LCDs of different sizes that will have a positive effect on manufacturing productivity and lowering prices of digital devices. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Mikhail M. Feldstein Ronald A. Siegel 《Journal of Polymer Science.Polymer Physics》2012,50(11):739-772
Pressure‐sensitive adhesives (PSAs) are finding increasing applications in various areas of industry and medicine. PSAs are a special class of viscoelastic polymers that form strong adhesive joints with substrates of varying chemical nature under application of light external bonding pressures (1–10 Pa) over short periods of time (1–5 s). To be a PSA, a polymer should possess both high fluidity under applied bonding pressure, to form good adhesive contact, and high cohesive strength and elasticity, which are necessary for resistance to debonding stresses and for dissipation of mechanical energy at the stage of adhesive bond failure under detaching force. For rational design of novel PSAs, molecular insight into mechanisms of their adhesive behavior is necessary. As shown in this review, strength of PSA adhesive joints is controlled by a combination of diffusion, viscoelastic, and relaxation mechanisms. At the molecular level, strong adhesion is the result of a narrow balance between two generally conflicting properties: high cohesive strength and large free volume. These conflicting properties are difficult to combine in a single polymer material. Individually, high cohesive interaction energy and large free volume are necessary but insufficient prerequisites for PSA strength. Evident correlations are observed between the adhesive bond strengths of different PSAs, and their relaxation behaviors are described by longer relaxation times. Innovative PSAs with tailored properties can be produced by physical mixing of nonadhesive long‐ and short‐chain linear parent polymers, with groups at the two ends of the short chains complementary to the functional groups in the recurring units of the long chains. Although chemical composition and molecular structure of such innovative adhesives are unrelated to those of conventional PSAs, their mechanical properties and adhesive behaviors obey the same general laws, such as the Dahlquist's criterion of tack. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
5.
Three series of pressure‐sensitive adhesives were prepared with constant glass‐transition temperature, using emulsion polymerization. The monomers chosen were butyl acrylate, 2‐ethylhexyl acrylate (EHA), methyl methacrylate (MMA), and acrylic acid (AA). Within each polymer series, the proportion of AA monomer was held constant for each polymer preparation but acrylic ester monomer levels were varied. Adhesion performance was assessed by measurement of loop tack, static shear resistance, and through the construction of peel master‐curves. Peel master‐curves were generated through peel tests conducted over a range of temperatures and peel rates and through application of the time–temperature superposition principle. Bulk effects dominated by polymer zero shear viscosity change as AA and EHA levels were varied were attributed to the observed effect on static shear resistance and the horizontal displacements of peel master‐curves. Static shear resistance was found to strongly correlate with log(aC), a parameter introduced to horizontally shift peel master‐curves to form a superposed, “super master‐curve”. An interfacial interaction was proposed to account for deviations observed when loop tack was correlated with log(aC). Surface rearrangements via hydrogen bonding with the test substrate were suggested as responsible for the interfacial interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1237–1252, 2006 相似文献
6.
Smrati Gupta Dirk Kuckling Katja Kretschmer Veena Choudhary Hans‐Jürgen Adler 《Journal of polymer science. Part A, Polymer chemistry》2007,45(4):669-679
The aim of this work was the development of a versatile route for the preparation of temperature‐ and pH‐responsive hydrogels with small dimensions. The copolymerization of N,N‐dimethylaminoethyl methacrylate with various amounts (5 and 10 mol %) of dimethylmaleimidoethyl methacrylate in solution with 2,2′‐azobisisobutyronitrile as an initiator is described. The structural and molecular characterization of the copolymers was performed with proton nuclear magnetic resonance, Fourier transform infrared, and ultraviolet spectroscopy, as well as size exclusion chromatography. Differential scanning calorimetry and thermogravimetry were used for the thermal characterization of the copolymers. Micro‐ and nanohydrogels of the copolymers were prepared by photocrosslinking. The gels obtained by photocrosslinking were characterized with a combination of surface plasmon resonance and optical waveguide spectroscopy, dynamic light scattering, and scanning electron microscopy. The hydrogels showed temperature‐ and pH‐responsive behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 669–679, 2007 相似文献
7.
Makoto Obata Yurie Tanaka Naoko Araki Shiho Hirohara Shigenobu Yano Kazunori Mitsuo Keisuke Asai Masafumi Harada Toyoji Kakuchi Chikara Ohtsuki 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):2997-3006
Pressure‐sensitive paint (PSP), which consists of luminescent molecules embedded in an oxygen‐permeable polymer, has been developed for use in wind‐tunnel experiments. To improve the PSP technique, a novel luminescent methacrylate monomer, 5‐[4‐(2‐methacryloyloxyethoxycarbonyl)phenyl]‐10,15,20‐triphenylporphinato platinum(II), was synthesized and copolymerized with isobutyl methacrylate and 2,2,2‐trifluoroethyl methacrylate to produce a dye‐pendant copolymer ( 2 ). The introduction of 5,10,15,20‐tetraphenylporphinato platinum(II) (PtTPP) dye into 2 was confirmed by ultraviolet–visible spectroscopy and extended X‐ray absorption fine structure measurements. The extent of PtTPP dye incorporation in 2 was proportional to the molar fraction of the PtTPP‐pendant methacrylate monomer in the feed. The oxygen‐sensing property of 2 was compared with that of a PSP consisting of PtTPP dye embedded in poly(isobutyl‐co‐2,2,2‐trifluoroethyl methacrylate). Although the simple mixture of PtTPP and poly(isobutyl‐co‐2,2,2‐trifluoroethyl methacrylate) showed a marked deviation from a single Stern–Volmer relation, novel copolymer 2 gave a highly linear Stern–Volmer plot. This was unequivocal evidence of dye conjugation on the oxygen‐sensing polymer film. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2997–3006, 2005 相似文献
8.
Christian D. Lorenz Mark J. Stevens Richard P. Wool 《Journal of Polymer Science.Polymer Physics》2004,42(18):3333-3343
The use of natural plant oils in the production of adhesives has been the focus of much research because natural oils are a renewable resource which have environmental and economic advantages over the petroleum‐derived chemicals used in traditional adhesives. The network formation and the stress–strain behavior of these plant oil–based adhesives is studied using a combination of simulation techniques. An off‐lattice Monte Carlo simulation has been developed to model the formation of these networks via the free‐radical copolymerization of the triglycerides present in natural oils. Networks of systems representing the triglycerides found in soybean oil, linseed oil, and olive oil are generated, as are networks made from other “theoretical” natural oils. The structure of the networks is characterized by percolation analysis. The stress–strain behavior of these networks is studied using large‐scale molecular dynamics simulations. Tensile strains are applied to the networks and it is observed that with increasing n the failure stress increases but the failure strain decreases. Also, for systems with low values of n, large voids form while the system is strained and then the system fails cohesively. However, for large n, no significant voiding is observed and the system fails close to the interface. The simulation results are shown to be consistent with the vector percolation theoretical prediction for how the failure stress relates to n. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3333–3343, 2004 相似文献
9.
Novel drug‐loaded hydrogel beads for intestine‐targeted controlled release were developed by using pH‐ and temperature‐sensitive carboxymethyl chitosan‐graft‐poly(N,N‐diethylacrylamide) (CMCTS‐g‐PDEA) hydrogel as carriers and vitamin B2 (VB2) as a model drug. The hydrogel beads were prepared based on Ca2+ ionic crosslinking in acidic solution and formed dual crosslinked network structure. The structure of hydrogel and morphology of drug‐loaded beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The study about swelling characteristics of hydrogel beads indicated that the beads had obvious pH‐ and temperature‐sensitivity. In vitro release studies of drug‐loaded beads were carried out in pH 1.2 HCl buffer solution and pH 7.4 phosphate buffer solution at 37°C, respectively. The results indicated that the dual crosslinked method could effectively control the drug release rate under gastrointestinal tract (GIT) conditions, which was superior to traditional single crosslinked beads. In addition, the effects of grafting percentage, pH value, and temperature on the release behavior of the VB2 were investigated. The drug release mechanism of CMCTS‐g‐PDEA drug‐loaded beads was analyzed by Peppa's potential equation. According to this study, the dual crosslinked hydrogel beads based on CMCTS‐g‐PDEA could serve as suitable candidate for drug site‐specific carrier in intestine. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
11.
An environmental friendly approach for partial de‐crosslinking of post‐vulcanized fluoroelastomer (FKM) scraps through high‐shear mechanical milling has been developed for recycling of the FKM. The method not only overcomes the expensive use and recovery of organic solvents but also gives rise to reclaimed rubbers with superior mechanical properties. After 32 cycles of milling, the gel fraction of FKM decreased from its original 97.8% to 79.7%. The appearance of the –CF2‐associated peaks C1s spectra after mechanical milling confirmed the partial de‐crosslinking of FKM. The structure change of FKM sol part before and after mechanical milling was also investigated by Fourier transform infrared (FTIR) analysis and gel permeation chromatography (GPC) measurements. The reclaimed FKM exhibited excellent mechanical and thermal properties, indicating a strong potential for future applications. The tensile strength of FKM re‐vulcanizates is 6.6 MPa, retaining about 84% properties of virgin FKM vulcanizates (7.9 MPa), and the elongation at break was increased from 337.1% to 368.7%. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
Shana P. Bunker Richard P. Wool 《Journal of polymer science. Part A, Polymer chemistry》2002,40(4):451-458
The focus of this work is to synthesize a monomer from a fatty acid methyl ester capable of forming high molecular weight polymers. The mono‐unsaturation in the starting material, methyl oleate, was first epoxidized using a peroxy acid. This intermediate material was further modified using acrylic acid. The acrylated molecule is able to participate in free‐radical polymerization reactions to form high molecular weight polymers. The rate of polymerization was low because of the long aliphatic structure of the monomer. It is hypothesized that the polymerization reaction occurred in the interface between the particle and water, thereby slowing down the reaction. After 18 h of reaction, a monomer conversion of approximately 91% was achieved. A maximum weight‐average molecular weight of approximately 106 g/mol was observed after 14 h of reaction. At early reaction times linear polymers were formed. However, as the reaction time increased, the amount of branching that occurred on the polymer molecule increased, as indicated by gel permeation chromatography and light scattering. This has been attributed to chain transfer to polymer via hydrogen abstraction from a tertiary backbone C–H bond. The resulting polymer may be of considerable interest for pressure‐sensitive adhesive applications. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 451–458, 2002; DOI 10.1002/pola.10130 相似文献
13.
14.
Xian‐Zheng Zhang Da‐Qing Wu Chih‐Chang Chu 《Journal of Polymer Science.Polymer Physics》2003,41(6):582-593
In this study, the effect of the level of crosslinking on the properties of poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels was investigated in terms of their lower critical solution temperature (LCST), interior morphology, equilibrium swelling, and deswelling and swelling kinetics. The thermal analysis showed that PNIPAAm hydrogels, having a wide range of crosslinking levels, exhibited almost the same LCSTs, and this was different from what the conventional theory would have predicted. Scanning electron micrographs revealed that the interior network structure of the PNIPAAm matrix became more porous with an increase in the level of crosslinking. This more porous matrix provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling process and the swelling process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 582–593, 2003 相似文献
15.
The present investigation was directed towards the synthesis of a copolymer of 2‐ethylhexyl acrylate and acrylic acid to be exploited as a pressure sensitive adhesive (PSA) matrix in transdermal drug delivery systems. The polymer synthesis involved free radical solution polymerization using 2, 2′‐azobisisobutyronitrile as the free radical initiator. The experimental methodology involved the optimization of reaction conditions for the polymer synthesis. The optimized copolymer was then characterized by IR, 1H‐NMR, DSC, GPC and XRD. The PSA was also evaluated for percent free monomer content, intrinsic viscosity, refractive index, moisture uptake potential and film forming properties. To assess it suitability in the development of transdermal systems, peel strength values with respect to release liner as well as human skin and skin irritation potential were also determined. In addition, wear performance test was conducted to evaluate adhesion and adhesive transfer. The synthesized adhesive was found to have good peel strength; exhibited excellent adhesion and adhesive transfer on removal. It was found suitable for use in transdermals and could be further exploited either as an adhesive matrix or as a system component in the area of transdermal drug delivery. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
16.
Nobuhiro Ishikawa Masahiro Furutani Koji Arimitsu 《Journal of polymer science. Part A, Polymer chemistry》2016,54(10):1332-1338
A simple pressure‐sensitive adhesion (PSA) system incorporating noncovalent interaction between thymine and adenine is presented. A copolymer having thymine moieties is combined with a low‐molecular‐weight bifunctional adenine cross‐linker. Molecular interactions caused by multiple hydrogen bonds between the thymine and adenine units are evaluated by FT‐IR spectral measurement. Mechanical properties of the PSA are examined by stress–strain curves and dynamic mechanical analysis. As the number of adenine cross‐linkers increases, Young's modulus increases from 0.24 to 3.0 MPa, and the glass transition temperature increases. Furthermore, it is found that the PSAs have adequate adhesive property from their shear strength test. Heat treatment at 80 °C is effective for reinforcement because of interchange of the hydrogen bonds. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1332‐1338 相似文献
17.
Detailed finite element calculations are carried out in order to study the mechanical response of a compliant layer sandwiched between a rigid cylindrical flat punch and a rigid substrate. Two cases of practical interest are considered: one in which the layer is perfectly bonded to the punch and the substrate and one in which the interface between the punch and the layer is frictionless. The substrate is assumed to be perfectly bonded to the adhesive layer in both cases. Analytic expressions are obtained for the stresses away from the edges, and the effect of lateral constraint is examined. The compliances of the loading systems for both cases are obtained numerically, and accurate analytic expressions are determined based on these numeric results. The nature of the stress fields near the contact edge are explored, and their connections with the energy release rate are determined. The relevance of these calculations to two recent adhesion tests is discussed. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2769–2784, 2000 相似文献
18.
Muhammad Irfan Xiang‐Yun Du Xu Ran Xu Rui Qi Shen Su Chen Ji Jun Xiao 《Journal of polymer science. Part A, Polymer chemistry》2019,57(22):2214-2221
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221 相似文献
19.
《大分子反应工程》2018,12(3)
Cellulose nanocrystals (CNCs) are safe, “green,” hydrophilic nanoparticles. CNCs are added in situ during a semibatch 2‐ethyl hexyl acrylate (EHA)/n‐butyl acrylate (BA)/methyl methacrylate (MMA) emulsion polymerization. As EHA is a more hydrophobic monomer, manipulation of the monomer feed composition allows for the evaluation of the effect of hydrophobicity on CNC distribution in the nanocomposite and ultimately on adhesive properties. The adhesive properties (loop tack, peel strength, and shear strength) of three different EHA/BA/MMA latex formulations are shown to simultaneously improve with increasing CNC loading. However, the hydrophobicity of the EHA leads to a nonuniform distribution of CNCs in the latex films. Comparison of the in situ polymerized nanocomposites to their blended counterparts is also made. 相似文献
20.
Mark F. Sonnenschein Steven P. Webb Robert C. Cieslinski Benjamin L. Wendt 《Journal of polymer science. Part A, Polymer chemistry》2007,45(6):989-998
The formulation, polymerization, and performance of a new class of low‐surface‐energy adhesives for plastics are described. The polymerization involves the simultaneous room‐temperature polymerization of polyoxirane monomers in an acrylic monomer phase. The polymerization of the acrylic phase and adhesion promotion to plastics are catalyzed after the decomplexation and oxidation of trialkylborane–amine complexes. The polymerization of the epoxy phase is catalyzed with a Lewis acid such as BF3, ZnCl2, or SnCl4 complexed with ether or amine. This article explores the resulting adhesives as a function of the epoxy monomer functionality, concentration, solubility in the acrylic monomer, Lewis acid catalyst concentration, phase crosslinking, and postprocessing thermal history. The adhesive morphology exhibits a finely dispersed epoxy phase strongly interacting with the major acrylic phase resulting from a nucleation‐and‐growth phase‐separation mechanism. Excellent adhesion to plastics, including polyethylene, polypropylene, poly(tetrafluoroethylene), poly(ethylene terephthalate), and nylon, is achieved with a much higher thermal performance than that achievable with acrylic polymers alone. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 989–998, 2007 相似文献