首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2018,30(8):1604-1609
A novel approach to high loaded Pt core/carbon shell catalyst synthesis from a Pt‐aniline complex was reported. The Pt‐aniline complex was successfully synthesized by irradiating an ultrasound to the hexachloro platinic acid and aniline monomer mixture. The highly viscous nature of aniline leads to reproducible hexagonal plate like Pt‐aniline complex crystals. The chemical composition of the Pt‐aniline complex was identified as [PtCl2(C6H5NH2)2] with the help of NMR, XPS, HR ESI‐MS, and TGA analyses. Furthermore, the Pt‐aniline hexagonal plates were sintered at various temperatures like 400 °C, 500 °C, and 700 °C for an hour. This formed the highly dispersed carbon covered Pt nano particles with loading of 80.1 wt %, 81.3 wt %, and 83.4 wt % for HP‐4, HP‐5, and HP‐7, respectively. After supporting it on Vulcan XC‐72, Pt core/carbon shell pyrolyzed at a low temperature showed excellent performance in methanol oxidation reaction. In addition, Pt core/carbon shell prepared at a high temperature revealed excellent tolerance to methanol.  相似文献   

2.
Sumanenemonoone imine compounds bridged by a redox‐active π‐conjugated unit on the basis of the conversion between 1,4‐phenylenediamine and 1,4‐benzoquinonediimine were synthesized and characterized. The stepwise coordination of the imino groups to PdII in the sumanenemonoone imine compound bridged by 1,4‐benzoquinonediimine was indicated by the titration experiment. Laser irradiation of a film of the metal‐free quionediimine gave nitrogen‐doped graphitic carbon, which was supported by an increase in conductivity and by Raman spectroscopy. The obtained graphitic carbon corresponds to carbonous compounds thermally treated at approximately 700–1000 °C. The ratio of nitrogen and carbon relative to that in the starting compound was nearly completely retained (5.4 % decrease).  相似文献   

3.
A series of Fe?Ni mixed‐oxide catalysts were synthesized by using the sol–gel method for the reduction of NO by CO. These Fe?Ni mixed‐oxide catalysts exhibited tremendously enhanced catalytic performance compared to monometallic catalysts that were prepared by using the same method. The effects of Fe/Ni molar ratio and calcination temperature on the catalytic activity were examined and the physicochemical properties of the catalysts were characterized by using XRD, Raman spectroscopy, N2‐adsorption/‐desorption isotherms, temperature‐programmed reduction with hydrogen (H2‐TPR), temperature‐programmed desorption of nitric oxide (NO‐TPD), and X‐ray photoelectron spectroscopy (XPS). The results indicated that the reduction behavior, surface oxygen species, and surface chemical valence states of iron and nickel in the catalysts were the key factors in the NO elimination. Fe0.5Ni0.5Ox that was calcined at 250 °C exhibited excellent catalytic activity of 100 % NO conversion at 130 °C and a lifetime of more than 40 hours. A plausible mechanism for the reduction of NO by CO over the Fe?Ni mixed‐oxide catalysts is proposed, based on XPS and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses.  相似文献   

4.
In this work, phosphorylated chitosan‐coated carbon microspheres (PCH@CMS) was successfully synthesized. Obtained PCH@CMS used as flame retardant was added into unsaturated polyester resin (UPR). Fourier infrared spectroscopy (FTIR) and X‐ray electron spectroscopy (XPS) results indicated that C═O, P─O, and P═O appeared on the surface of PCH@CMS. Compared with UPR, the residues of UPR/PCH@CMS‐10 at 800°C under nitrogen and air atmospheres increased by 9.0 and 3.9 wt%, respectively, and the peak heat release rate (pHRR) and the peak smoke release rate (pSPR) of UPR/PCH@CMS‐3 decreased by 18.9% and 23.5%, respectively. Limiting oxygen index (LOI), thermogravimetric analyzer (TG), and cone calorimeter test (CCT) results showed that the addition of PCH@CMS could enhance the flame retardancy and smoke suppression of the UPR composites. Moreover, the residues after CCT were characterized by scanning electron microscopy (SEM), XPS, and laser Raman spectroscopy (LRS). Based on the above results, the flame retardant mechanism of PCH@CMS was proposed. The carbon layer produced by the UPR/PCH@CMS composites was tortuous and could suppress the heat and pyrolysis product exchange with UPR matrix.  相似文献   

5.
Behaviors of Pd structures with different thicknesses supported by Ta2O5/Ta in the reaction with oxygen and CO were studied by XPS and SEM. For the samples with a Pd thickness of 3 nm, a new low‐binding‐energy component appeared in the Pd 3d level upon O2 exposure at ~200 °C and was reduced in intensity after a subsequent CO exposure at 150 and 200 °C. The change in the Ta 4f state could also be found upon oxygen and CO exposure, indicating that both Pd and the Ta‐oxide substrate participate in the chemical reactions. For the sample with a higher Pd thickness, a positive shift in the Pd 3d level due to the oxidation of Pd was observed after exposure to O2 at a higher temperature (280 °C). A subsequent CO exposure at ~150 °C could not reduce Pd‐oxide layers, as confirmed by the unchanged Pd 3d spectra after CO treatment, i.e. Pd‐oxide was not reactive for CO oxidation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

7.
Here we report the thermal conversion of one‐dimensional (1D) fullerene (C60) single‐crystal nanorods and nanotubes to nanoporous carbon materials with retention of the initial 1D morphology. The 1D C60 crystals are heated directly at very high temperature (up to 2000 °C) in vacuum, yielding a new family of nanoporous carbons having π‐electron conjugation within the sp2‐carbon robust frameworks. These new nanoporous carbon materials show excellent electrochemical capacitance and superior sensing properties for aromatic compounds compared to commercial activated carbons.  相似文献   

8.
Polyacrylonitrile‐based carbon fibers were modified by oxidation in air, and a systematic study of surface groups and surface resistance at different treated temperatures was made. Progressive fiber weight loss occurred with increasing extents of air oxidation, and it was approximately proportional to the extent of air oxidation from the onset of oxidation up to 400 °C. At this point 4.4% of the initial fiber weight had been lost. A faster loss of weight occurred as the extent of air oxidation increased from 400 °C to 700 °C. X‐ray photoelectron spectroscopy studies (C 1s and O 1s) indicated that the oxygen/carbon atomic ratio rose rapidly from 2.64% (as‐received carbon fiber) to 42.83% as the oxidation temperature was increased to 400 °C. Fourier transform infrared spectra showed the relative intensity of the peaks at about 3440 cm?1 from ―OH stretching vibrations and at 1634 cm?1 from ―C?O stretching vibrations increased significantly at 400 °C. FESEM micrographs showed that as‐received fibers show relatively smooth surface. With oxidation temperature increasing, the fiber surface was rougher. The surface resistance of treated carbon fibers decreased obviously with increasing oxidation temperatures. The most decrease was about 100% at 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Two samples of an activated carbon are heat treated at 500 °C for 2 h under a flow of inert gas. The only difference between the treatments of the two carbons is the cooling down step. After these treatments, the two carbons were hydrophobic and presented similar adsorption properties and an identical behavior toward water and cyclohexane uptakes. After being stored in ambient conditions for 20 months, the stability of oxygen functional groups is studied. The quantification of various oxygen groups is done by Boehm’s titration and by thermogravimetry–mass spectroscopy analysis. It is found that the creation of oxygen groups, especially carboxylic acids, which are very attractive to water molecules, depends on the cooling down step. This is confirmed by both water isotherms and cyclohexane breakthrough measurements. Cyclohexane breakthrough times show that one of the heat treated carbons does not preserve its hydrophobic character compared to the other carbon, which presents a breakthrough time value close to that obtained before the storage.  相似文献   

10.
ZnO thin films were grown by pulsed laser deposition on titanium substrates at different substrate temperatures ranging from 300 to 700 °C. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS),photoluminescence, and Raman spectroscopy are employed to investigate the change of properties. XRD, XPS, and Raman data showed that the films consisted of TiO2 at high substrate temperature, which will deteriorate the crystallization quality of ZnO films. The optimum temperature for the growth of ZnO films on the Ti substrate is about 500 °C in this paper. The ZnO films grown on titanium substrate can be used in direct current, microwave, and medical applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Thin films of vanadium oxide were grown on vanadium metal surfaces (i) in air at ambient conditions, (ii) in 5 mM H2SO4 (aq), pH 3, (iii) by thermal oxidation at low oxygen pressure (10?5 mbar) at temperatures between 350 and 550 °C and (iv) at near‐atmospheric oxygen pressure (750 mbar) at 500 °C. The oxide films were investigated by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). The lithium intercalation properties were studied by cyclic voltammetry (CV). The results show that the oxide films formed in air at room temperature (RT), in acidic aqueous solution, and at low oxygen pressure at elevated temperatures are composed of V2O3. In air and in aqueous solution at RT, the oxide films are ultra‐thin and hydroxylated. At 500 °C, nearly atmospheric oxygen pressure is required to form crystalline V2O5 films. The oxide films grown at pO2 = 750 mbar for 5 min are about 260‐nm thick, and consist of a 115‐nm outer layer of crystalline V2O5. The inner oxide is mainly composed of VO2. For all high temperature oxidations, the oxygen diffusion from the oxide film into the metal matrix was considerable. The oxygen saturation of the metal at 450 °C was found, by XPS, to be 27 at.% at the oxide/metal interface. The well‐crystallized V2O5 film, formed by oxidation for 5 min at 500 °C and 750 mbar O2, was shown to have good lithium intercalation properties and is a promising candidate as electrode material in lithium batteries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Imidazolium‐ and benzimidazolium‐substituted diacetylenes with bromide or nitrogen‐rich dicyanamide and tricyanomethanide anions were synthesized and used as precursors for the preparation of N‐doped carbon materials. On pyrolysis under argon at 800 °C both halide precursors afforded graphite‐like structures with nitrogen contents of about 8.5 %. When the dicyanamide and tricyanomethanide precursors were thermolyzed at the same temperature, graphite‐like structures were obtained that exhibit nitrogen contents in the range 17–20 wt %; thereby, the benefit of associating a polymerizing cation with a polymerizing anion in a single precursor was demonstrated. On pyrolysis at 1100 °C the nitrogen contents of the latter pyrolysates remain high (ca. 6 wt %). Adsorption measurements with krypton at 77 K indicated that the materials are nonporous. The highest electrical conductivity was observed for a pyrolysate with one of the lowest nitrogen contents, which also has the highest degree of graphitization. Thus, the quest for N‐rich carbons with high electrical conductivities should include both maximization of the nitrogen content and optimization of the degree of graphitization. Crystallographic investigation of the precursors and spectroscopic characterization of the pyrolysates prepared by heating at 220 °C indicate that construction of the final carbon framework does not involve the intermediate formation of a polydiacetylene.  相似文献   

14.
A novel nano‐fibrillated mesoporous carbon (IFMC) was successfully prepared via carbonization of the ionic liquid 1‐methyl‐3‐phenethyl‐1H‐imidazolium hydrogen sulfate ( 1 ) in the presence of SBA‐15. The material was shown to be an efficient and unique support for the palladium nanoparticle (PdNP) catalyst Pd@IFMC ( 2 ) in aerobic oxidation of heterocyclic, benzylic, and heteroatom containing alcohols on pure water at temperatures as low as 40 °C for the first time and giving almost consistent activities and selectivities within more than six reaction runs. The catalyst has also been employed as an effective catalyst for the selective oxidation of aliphatic and allylic alcohols at 70–80 °C. The materials were characterized by X‐ray photoelectron spectroscopy (XPS), N2 adsorption–desorption analysis, transmission electron microscopy (TEM), and electron tomography (ET). Our compelling XPS and ET studies showed that higher activity of 2 compared to Pd@CMK‐3 and Pd/C in the aerobic oxidation of alcohols on water might be due to the presence of nitrogen functionalities inside the carbon structure and also the fibrous nature of our materials. The presence of a nitrogen heteroatom in the carboneous framework might also be responsible for the relatively uniform and nearly atomic‐scale distribution of PdNPs throughout the mesoporous structure and the inhibition of Pd agglomeration during the reaction, resulting in high durability, high stability, and recycling characteristics of 2 . This effect was clearly confirmed by comparing the TEM images of the recovered 2 and Pd@CMK‐3.  相似文献   

15.
There is significant interest in high‐performance materials that can directly and efficiently capture water vapor, particularly from air. Herein, we report a class of novel porous carbon cuboids with unusual ultra‐hydrophilic properties, over which the synergistic effects between surface heterogeneity and micropore architecture is maximized, leading to the best atmospheric water‐capture performance among porous carbons to date, with a water capacity of up to 9.82 mmol g?1 at P/P0=0.2 and 25 °C (20 % relative humidity or 6000 ppm). Benefiting from properties, such as defined morphology, narrow pore size distribution, and high heterogeneity, this series of functional carbons may serve as model materials for fundamental research on carbon chemistry and the advance of new types of materials for water‐vapor capture as well as other applications requiring combined highly hydrophilic surface chemistry, developed hierarchical porosity, and excellent stability.  相似文献   

16.
Cellulose ( 1 ) was converted for the first time to 6‐phenyl‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 6 ) in 33% overall yield. Intermediates in the five‐step conversion of 1 to­ 6 were: 6‐O‐tritylcellulose ( 2 ), 6‐O‐trityl‐2,3‐di‐O‐methylcellulose ( 3 ), 2,3‐di‐O‐methylcellulose ( 4 ); and 6‐bromo‐6‐deoxy‐2,3‐di‐O‐methylcellulose ( 5 ). Elemental and quantitative carbon‐13 analyses were concurrently used to verify and confirm the degrees of substitution in each new polymer. Gel permeation chromotography (GPC) data were generated to monitor the changes in molecular weight (DPw) as the synthesis progressed, and the compound average decrease in cellulose DPw was ~ 27%. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the decomposition of all polymers. The degradation temperatures ( °C) and percent char at 500 °C of cellulose derivatives 2 to 6 were 308.6 and 6.3%, 227.6 °C and 9.7%, 273.9 °C and 30.2%, 200.4 °C and 25.6%, and 207.2 °C and 27.0%, respectively. The glass transition temperature (Tg) of­6‐O‐tritylcellulose by dynamic mechanical analysis (DMA) occurred at 126.7 °C and the modulus (E′, Pa) dropped 8.9 fold in the transition from ?150 °C to + 180 °C (6.6 × 109 to 7.4 × 108 Pa). Modulus at 20 °C was 3.26 × 109 Pa. Complete proton and carbon‐13 chemical shift assignments of the repeating unit of the title polymer were made by a combination of the HMQC and COSY NMR methods. Ultimate non‐destructive proof of carbon–carbon bond formation at C6 of the anhydroglucose moiety was established by generating correlations between resonances of CH26 (anhydroglucose) and C1′, H2′, and H6′ of the attached aryl ring using the heteronuclear multiple‐bond correlation (HMBC) method. In this study, we achieved three major objectives: (a) new methodologies for the chemical modification of cellulose were developed; (b) new cellulose derivatives were designed, prepared and characterized; (c) unequivocal structural proof for carbon–carbon bond formation with cellulose was derived non‐destructively by use of one‐ and two‐dimensional NMR methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
In a stringent and near oxygen‐free environment, Si?H surfaces were introduced to a trifluoroalkyne, an alcohol‐derivatized alkyne, as well as an equal mixture of both alkynes at a temperature of 130 °C. Contact angle measurements, high‐resolution X‐ray photoelectron spectroscopy (XPS), and angle‐resolved XPS were performed to examine the system. Si?H surfaces were found to have a strong preference towards the formation of Si?O?C rather than Si?C bonds when the alcohol and alkyne reactivities were compared.  相似文献   

18.
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010  相似文献   

19.
Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM images after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condition on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that nitrogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V=1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as reference and the N-doped TiO2 annealed at 700 ℃.  相似文献   

20.
Surface modification of carbon fibers with Ce‐rich coating was investigated by scanning electron microscopy (SEM), and it is shown that a Ce‐rich coating can protect carbon fibers. After the carbon surface was scratched crosswise, self‐healing behavior of carbon surface with chemical immersion treatment from Ce salt solution was investigated at various immersion times. The Ce‐rich compounds deposited easily on the scratch sites, filling it with Ce‐rich compounds. Such self‐healing behavior enables the carbon surface to protect itself. X‐ray photoelectron spectroscopy (XPS) results indicate that Ce4+ was the dominant oxidation state for the Ce‐rich coating on the carbon surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号