首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Ethene homopolymerization and copolymerization with 1‐hexene were performed with three new tetramethyldisilylene‐bridged zirconocene catalysts with 2‐indenyl ligand ( A ), 2‐tetrahydroindenyl ligand ( B ), and tetramethyl‐cyclopentadienyl ligand ( C ) and with methylaluminoxane as a cocatalyst. Catalysts A and B showed substantial comonomer incorporation, resulting in a copolymer melting temperature more than 20° lower than that of the corresponding homopolymer. In contrast, catalyst C produced a copolymer with a low 1‐hexene content and a high melting temperature. The reduction in the molecular weight with 1‐hexene addition also correlated well with the comonomer incorporation. For all three catalysts, the homopolymer and copolymer unsaturations indicated frequent chain termination after 1‐hexene insertion and a high degree of chain‐end isomerization during the homopolymerization of ethene. The chain transfer to Al in the cocatalyst also appeared to be important. The comonomer response could be correlated with the structural properties of the catalyst, as derived from quantum chemical calculations. A linear model, calibrated against recent experiments with unbridged (MenC5H5?n)2ZrCl2 catalysts, suggested that the low comonomer incorporation obtained with catalyst C was caused partly by a narrow opening angle between the aromatic ligands and partly by steric hindrance in the transition state of comonomer insertion. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1622–1631, 2003  相似文献   

2.
Ethene homopolymerization and copolymerization with 1‐hexene were catalyzed by methyl‐substituted cyclopentadienyl (Cp) zirconium dichlorides, (Rn C5H5−n)2ZrCl2 (Rn = H, Me, 1,2‐Me2, 1,3‐Me2, 1,2,3‐Me3, 1,2,4‐Me3, Me4, or Me5), and methylaluminoxane. The polymers were characterized with Fourier transform infrared, nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry techniques. Generally, an increasing number of methyl substituents on the Cp ligand results in lower 1‐hexene incorporation in the copolymer. The two catalysts with split methyl substitution (Rn = 1,3‐Me2 and Rn = 1,2,4‐Me3) show a higher comonomer response than their disubstituted and trisubstituted counterparts (Rn = 1,2‐Me2 and Rn = 1,2,3‐Me3). They even incorporate more 1‐hexene than Rn = H and Rn = Me. These findings are qualitatively in agreement with the results of a theoretical study based on density functional calculations. The presence of comonomer does not influence the termination reactions after the insertion of ethene. There is more frequent termination after each hexene insertion with increasing comonomer incorporation except for the two catalysts with split methyl substituents. The termination probability per inserted comonomer is highest for the less substituted catalysts. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3161–3172, 2000  相似文献   

3.
Two bis(β‐ketoamino)copper [ArNC(CH3)CHC(CH3)O]2Cu ( 1 , Ar = 2,6‐dimethylphenyl; 2 , Ar = 2,6‐diisopropylphenyl) complexes were synthesized and characterized. Homo‐ and copolymerizations of methyl acrylate (MA) and 1‐hexene with bis(β‐ketoamino)copper(II) complexes activated with methylaluminoxane (MAO) were investigated in detail. MA was polymerized in high conversion (>72%) to produce the syndio‐rich atactic poly(methyl acrylate), but 1‐hexene was not polymerized with copper complexes/MAO. Copolymerizations of MA and 1‐hexene with 1 , 2 /MAO produced acrylate‐enriched copolymers (MA > 80%) with isolated hexenes in the backbone. The calculation of reactivity ratios showed that r(MA) is 8.47 and r(hexene) is near to 0 determined by a Fineman‐Ross method. The polymerization mechanism was discussed, and an insertion‐triggered radical mechanism was also proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1113–1121, 2010  相似文献   

4.
Polymerizations of higher α‐olefins, 1‐pentene, 1‐hexene, 1‐octene, and 1‐decene were carried out at 30 °C in toluene by using highly isospecific rac‐Me2Si(1‐C5H2‐2‐CH3‐4‐t Bu)2Zr(NMe2)2 (rac‐1) compound in the presence of Al(iBu)3/[CPh3][B(C6F5)4] as a cocatalyst formulation. Both the bulkiness of monomer and the lateral size of polymer influenced the activity of polymerization. The larger lateral of polymer chain opens the π‐ligand of active site wide and favors the insertion of monomer, while the large size of monomer inserts itself into polymer chain more difficultly due to the steric hindrance. Highly isotactic poly(α‐olefin)s of high molecular weight (MW) were produced. The MW decreased from polypropylene to poly(1‐hexene), and then increased from poly(1‐hexene) to poly(1‐decene). The isotacticity (as [mm] triad) of the polymer decreased with the increased lateral size in the order: poly(1‐pentene) > poly(1‐hexene) > poly(1‐octene) > poly(1‐decene). The similar dependence of the lateral size on the melting point of polymer was recorded by differential scanning calorimetry (DSC). 1H NMR analysis showed that vinylidene group resulting from β‐H elimination and saturated methyl groups resulting from chain transfer to cocatalyst are the main end groups of polymer chain. The vinylidene and internal double bonds are also identified by Raman spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1687–1697, 2000  相似文献   

5.
We investigated the catalytic performance of both bridged unsubstituted [rac‐EtInd2ZrMe2, rac‐Me2SiInd2ZrMe2] and 2‐substituted [rac‐Et(2‐MeInd)2ZrMe2), rac‐Me2Si(2‐MeInd)2ZrMe2] dimethylbisindenylzirconocenes activated with triisobutyl aluminum (TIBA) as a single activator in (a) homopolymerizations of ethylene and propylene, (b) copolymerization of ethylene with propylene and hexene‐1, and (c) copolymerization of propylene with hexene‐1 (at AlTIBA/Zr = 100‐300 mol/mol). Unsubstituted catalysts were inactive in homopolymerizations of ethylene and propylene and copolymerization of propylene with hexene‐1 but exhibited high activity in copolymerizations of ethylene with propylene and hexene‐1. 2‐Substituted zirconocenes activated with TIBA were active in homopolymerizations of ethylene and propylene and exhibited high activity in copolymerization of ethylene with propylene and hexene‐1, and in copolymerization of propylene with hexene‐1. Comparative microstructural analysis of ethylene‐propylene copolymers prepared over rac‐Me2SiInd2ZrMe2 activated with TIBA or Me2NHPhB(C6F5)4 has shown that the copolymers formed upon activation with TIBA are statistical in nature with some tendency to alternation, whereas those with borate activated system show a tendency to formation of comonomer blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2934–2941, 2010  相似文献   

6.
Ethylene/1‐hexene copolymerizations with disiloxane‐bridged metallocenes, rac‐ and meso‐1,1,3,3‐tetramethyldisiloxanediyl‐bis(1‐indenyl)zirconium dichloride (rac‐ 1 , meso‐ 1 ) activated by modified methylaluminoxane were performed to investigate the influence of conformational dynamics on comonomer selectivity. Although 1H NOESY (nuclear Overhauser and exchange spectroscopy) analysis indicated that the most stable conformation for the meso isomer in solution was that in which both indenes project over the metal coordination site, this isomer showed higher 1‐hexene selectivity in copolymerization (re = 140 ± 30, rh = 0.024 ± 0.004) than the rac isomer with only one indene over the coordination site (re = 240 ± 20, rh = 0.005 ± 0.001). The meso isomer showed high 1‐hexene selectivity, a high product of reactivity ratios (rerh = 3.3 ± 0.5) and produced copolymers that could be separated into fractions with different ethylene content suggesting that the active species exhibited multisite behavior and populated conformations with different comonomer selectivities during the copolymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3323–3331, 2004  相似文献   

7.
[Pd2(μ‐Cl)2(C6F5)2(tht)2] ( 1 ) is a very efficient initiator of the radical polymerization of methyl acrylate, but it is not active in the polymerization of methyl methacrylate or in the copolymerization with 1‐hexene. The addition of an excess of NBu4Cl to solutions of [Pd2(μ‐Cl)2(C6F5)2(tht)2] ( 1 ) provides an initiator system that copolymerizes methyl acrylate and 1‐hexene by an insertion‐triggered radical mechanism. Random copolymers are obtained with 11% incorporation of 1‐hexene in moderate yields (about 35%). Studies of the decomposition products obtained after the first insertion of methyl acrylate in the Pd? C6F5 bond of 1 show that the addition of excess halide in the presence of monomer favors the homolytic cleavage of the Pd? C bond, and the generation of the radicals that are active species in the polymerization, versus alternative evolution pathways. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5682–5691, 2006  相似文献   

8.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH = N(C6F5)] [PhN = C(R1)CHC(R2)O]TiCl2 [ 3a : R1 = CF3, R2 = tBu; 3b : R1 = Me, R2 = CF3; 3c : R1 = CF3, R2 = Ph; 3d : R1 = CF3, R2 = C6H4Ph(p ); 3e : R1 = CF3, R2 = C6H4Ph(o ); 3f : R = CF3, R2 = C6H4Cl(p ); 3g : R1 = CF3; R2 = C6H3Cl2(2,5); 3h : R1 = CF3, R2 = C6H4Me(p )] were investigated as catalysts for ethylene (co)polymerization. In the presence of modified methylaluminoxane as a cocatalyst, these complexes showed activities about 50%–1000% and 10%–100% higher than their corresponding bis(β‐enaminoketonato) titanium complexes for ethylene homo‐ and ethylene/1‐hexene copolymerization, respectively. They produced high or moderate molecular weight copolymers with 1‐hexene incorporations about 10%–200% higher than their homoligated counterpart pentafluorinated FI‐Ti complex. Among them, complex 3b displayed the highest activity [2.06 × 106 g/molTi?h], affording copolymers with the highest 1‐hexene incorporations of 34.8 mol% under mild conditions. Moreover, catalyst 3h with electron‐donating group not only exhibited much higher 1‐hexene incorporations (9.0 mol% vs. 3.2 mol%) than pentafluorinated FI‐Ti complex but also generated copolymers with similar narrow molecular weight distributions (M w/M n = 1.20–1.26). When the 1‐hexene concentration in the feed was about 2.0 mol/L and the hexene incorporation of resultant polymer was about 9.0 mol%, a quasi‐living copolymerization behavior could be achieved. 1H and 13C NMR spectroscopic analysis of their resulting copolymers demonstrated the possible copolymerization mechanism, which was related with the chain initiation, monomer insertion style, chain transfer and termination during the polymerization process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2787–2797  相似文献   

9.
A series of novel bridged multi‐chelated non‐metallocene catalysts is synthesized by the treatment of N,N‐imidazole, N,N‐dimethylimidazole, and N,N‐benzimidazole with n‐BuLi, 2,6‐dimethylaniline, and MCl4 (M = Ti, Zr) in THF. These catalysts are used for copolymerization of ethylene with 1‐hexene after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M molar ratio, and pressure of monomer on ethylene copolymerization behaviors are investigated in detail. These results reveal that these catalysts are favorable for copolymerization of ethylene with 1‐hexene featured high catalytic activity and high comonomer incorporation. The copolymer is characterized by 13C NMR, WAXD, GPC, and DSC. The results confirm that the obtained copolymer features broad molecular weight distribution (MWD) about 33–35 and high 1‐hexene incorporation up to 9.2 mol %, melting temperature of the copolymer depends on the content of 1‐hexene incorporation within the copolymer chain and 1‐hexene unit in the copolymer chain isolates by ethylene units. The homopolymer of ethylene has broader MWD with 42–46. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 417–424, 2010  相似文献   

10.
The ring‐opening reaction of (S)‐N‐tosyl‐2‐phenylaziridine by benzylamine in ethanol at 80 °C resulted in the formation of the (S,S)‐bis(N‐tosyl‐2‐amino‐2‐phenylethyl)benzylamine ligand in a 60% yield. The corresponding titanium complex, 1‐TiCl2, was prepared by the reaction of the dilithiated parent ligand with TiCl4. This precatalyst, in combination with methylaluminoxane, was capable of polymerizing 1‐hexene with good activities, resulting in the formation of good yields of low‐dispersity, high‐molecular‐weight polymers at low temperatures but higher yields of lower molecular weight polymers at higher temperatures. 1H and 13C NMR spectra of the polymers suggested high isotacticity and predominant chain termination via β‐hydride elimination. The enantiomerically pure catalysts, (R,R)‐1‐TiCl2 and (S,S)‐1‐TiCl2, showed nearly identical polymerization results at various polymerization temperatures. However, when the catalyst was prepared from a racemic ligand, the obtained polymers had lower molecular weights with a bimodal distribution. This observation suggested diastereomeric aggregation of the racemic catalyst, which was well supported by the NMR studies, and a modified Arrhenius plot (the natural logarithm of the number‐average molecular weight vs the reciprocal of the temperature) also showed sigmoidal behavior, indicating the existence of two or more active species. Analogous zirconium precatalysts showed similar results in the polymerization of 1‐hexene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4006–4014, 2006  相似文献   

11.
Commercial zeolite acid mordenite was thermally treated for use as a support for bis(n‐butyl‐cyclopentadienyl)zirconium dichloride [(n‐BuCp)2ZrCl2] for the further evaluation of ethylene/1‐hexene copolymerization. The polymerization time, temperature, and solvent, as well as the addition of tri(isobutyl)aluminum in the hexane medium, were evaluated. The catalytic activity and 1‐hexene content in the copolymer synthesized with the supported system were very near those obtained with the homogeneous precursor. A comonomer effect was observed for both systems. The polymerization rate profiles were obtained for ethylene polymerization, and the activation energy and monomer reactivity were calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3038–3048, 2004  相似文献   

12.
This study aims at characterizing in depth the microstructure of propylene‐co‐1‐pentene‐co‐1‐hexene terpolymers, which have been recently reported to develop the isotactic polypropylene δ trigonal polymorph when the total comonomer content is high enough. Such a specific crystalline form had been only reported so far in the analogous copolymers containing either 1‐pentene or 1‐hexene. A comparative 13C NMR study in solution of the aforementioned terpolymers and copolymers allows asserting the random insertion of both comonomers during chain growth under the polymerization conditions used. The reaction parameters, mainly catalyst and temperature, have been chosen for the purpose of assuring relatively high molar mass polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2537–2547  相似文献   

13.
A series of new mono β‐diiminato titanium complexes [(N(Ar)C(CH3))2 CH]TiCl3 ( 3a : Ar = 2.6‐F2C6H3; 3b : Ar = C6F5; 3c : Ar = 2.6‐Me2C6H3) have been synthesized and characterized. The crystal structure of 3a revealed that the β‐diiminato ligand in our complex is more close to the η2‐coordination mode with little delocalization of the double bonds, which is different from the strong delocalization in the ligands of η5‐coordinated (Tolnacnac)TiCl3 and η2‐coordinated (Dipnacnac)ZrCl3. The significant electronic effects of fluoro‐substituents on the olefin polymerization activity of mono β‐diiminato titanium complexes were found. Titanium complexes with fluorine‐containing β‐diiminato ligands, on activation with MMAO, are extremely active catalysts for polymerization of ethylene. The activity of copolymerization of ethylene and 1‐hexene is higher than homopolymerization of ethylene and increases with the increase of 1‐hexene concentrations, which show the positive “comonomer effect.” The molar percentage of 1‐hexene incorporation and polymer microstructures can also be modulated by the initial comonomer concentrations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 211–217, 2008  相似文献   

14.
In this work, ethylene‐1‐hexene copolymers were synthesized with a tandem catalysis system that consisted of a new trimerization catalyst bis(2‐dodecylsulfanyl‐ethyl) amine‐CrCl3/MAO ( 1 /MAO) and copolymerization catalyst Et(Ind)2ZrCl2/MAO ( 2 /MAO) at atmosphere pressure. Catalyst 1 trimerized ethylene with high activity and excellent selectivity in the presence of a relatively low amount of MAO. Catalyst 2 incorporated the 1‐hexene content and produced ethylene‐1‐hexene copolymer from an ethylene‐only stock in the same reactor. Adjusting the Cr/Zr ratio and reaction temperature yielded various branching densities and thus melting temperatures. However, broad DSC curves were observed when low temperatures and/or high Cr/Zr ratios were employed due to an accumulation of 1‐hexene component and composition drifting during the copolymerization. It was found that a short pretrimerization period resulted in more homogeneous materials that gave unimodal DSC curves. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3562–3569, 2007  相似文献   

15.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

16.
The suitability of the (n-butCp)2ZrCl2/methylaluminoxane (MAO) catalyst system for the copolymerization of ethene with propene, hexene, and hexadecene was studied and Ind2ZrCl2/MAO was tested as a catalyst for ethene/propene and ethene/hexene copolymerizations. The synergistic effect of longer α-olefin on propene incorporation in ethene/propene/hexene and ethene/propene/hexadecene terpolymerizations was investigated with Et(Ind)2ZrCl2MAO and (n-butCp)2ZrCl2/MAO catalyst systems. The molar masses, molar mass distributions, melting points, and densities of the products were measured. The incorporation of comonomer in the chain was further studied by segregation fractionation techniques (SFT), by differential scanning calorimetry (DSC), studying the β relaxations by dynamic mechanical analysis (DMA) and by studying the microstructure of some copolymers by 13C-NMR. In this study (n-butCp)2ZrCl2 and Ind2ZrCl2 exhibited equal response in copolymerization of ethene and propene and both catalysts were more active towards propene than longer α-olefins. A nearly identical incorporation of propene in the chain was found for the two catalysts when a higher propene feed was used. A lower hexene feed gave a more homogeneous comonomer distribution curve than a higher hexene feed and also showed the presence of branching. In terpolymerizations catalyzed with (n-butCp)2ZrCl2, the hexadecene concentrations of the ethene/propene/hexadecene terpolymers were always very low, and only traces of hexene were detected in ethene/propene/hexene terpolymers. With hexene no clear synergistic effect on the propene incorporation in the terpolymer was detected and with hexadecene the effect of the longer α-olefin was even slightly negative. With an Et(Ind)2ZrCl2/MAO catalyst system both hexene and hexadecene were incorporated in the chain in the terpolymerizations. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
Copolymerizations of ethylene with α‐olefins (i.e., 1‐hexene, 1‐octene, allylbenzene, and 4‐phenyl‐1‐butene) using the bis(β‐enaminoketonato) titanium complexes [(Ph)NC(R2)CHC(R1)O]2TiCl2 ( 1a : R1 = CF3, R2 = CH3; 1b : R1 = Ph, R2 = CF3; and 1c : R1 = t‐Bu, R2 = CF3), activated with modified methylaluminoxane as a cocatalyst, have been investigated. The catalyst activity, comonomer incorporation, and molecular weight, and molecular weight distribution of the polymers produced can be controlled over a wide range by the variation of the catalyst structure, α‐olefin, and reaction parameters such as the comonomer feed concentration. The substituents R1 and R2 of the ligands affect considerably both the catalyst activity and comonomer incorporation. Precatalyst 1a exhibits high catalytic activity and produces high‐molecular‐weight copolymers with high α‐olefin insertion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6323–6330, 2005  相似文献   

18.
A systematic study of the influence of the α‐olefin size, the catalyst stereospecificity and the reaction temperature was done on the catalytic activity and tacticity of poly‐α‐olefins from 1‐hexene to 1‐octadecene. The metallocenes used were rac‐Et[Ind2]ZrCl2 ( 1 ) and Me2C[Cp(9‐Flu)]ZrCl2 ( 2 ) to obtain isotactic and syndiotactic polyolefins. Some catalysts giving atactic polymers were also used in order to study all the possible 13C NMR pentades. Catalytic activities increased and isotacticity and syndiotacticity decreased with temperature, but no real trend was found with the α‐olefin size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4744–4753, 2005  相似文献   

19.
New ω‐alkenyl‐substituted ansa‐bridged bisindenyl zirconium complexes are prepared and tested as self‐immobilized catalysts for ethene polymerization. But, even at very high concentration of the tethered complexes and low pressure of ethene, there is no evidence of their insertion into the polyethene chain. A “cross polymerization” test, performed by copolymerizing the tethered complexes with ethene using rac‐Me2Si(2‐MeBenzInd)2ZrCl2 ( MBI ), does not lead to their incorporation into the polyethene chain. However, the corresponding ligand proves to be a suitable comonomer for ethene, and, through copolymerization promoted by MBI, innovative poly(ethene‐co‐2,2′‐bis[(1H‐inden‐3′‐yl)‐hex‐5‐ene) copolymers are prepared and characterized by 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The aim of this research was to study the effect of the initiator on the resulting monomer distribution for the cationic ring‐opening copolymerization of 2‐ethyl‐2‐oxazoline (EtOx) and 2‐phenyl‐2‐oxazoline (PhOx). At first, kinetic studies were performed for the homopolymerizations of both monomers at 160 °C under microwave irradiation using four initiators. These initiators have the same benzyl‐initiating group but different leaving groups, Cl?, Br?, I?, and OTs?. The basicity of the leaving group affects the ratio of covalent and cationic propagating species and, thus, the polymerization rate. The observed differences in polymerization rates could be correlated to the concentration of cationic species in the polymerization mixture as determined by 1H NMR spectroscopy. In a next‐step, polymerization kinetics were determined for the copolymerizations of EtOx and PhOx with these four initiators. The reactivity ratios for these copolymerizations were calculated from the polymerization rates obtained for the copolymerizations. This approach allows more accurate determination of the copolymerization parameters compared to conventional methods using the composition of single polymers. When benzyl chloride (BCl) was used as an initiator, no copolymers could be obtained because its reactivity is too low for the polymerization of PhOx. With decreasing basicity of the used counterions (Br? > I? > OTs?), the reactivity ratios gradually changed from rEtOx = 10.1 and rPhOx = 0.30 to rEtOx = 7.9 and rPhOx = 0.18. However, the large difference in reactivity ratios will lead to the formation of quasi‐diblock copolymers in all cases. In conclusion, the used initiator does influence the monomer distribution in the copolymers, but for the investigated system the differences were so small that no difference in the resulting polymer properties is expected. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4804–4816, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号