首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

2.
 The effect of the weight ratio of seed polymer/monomer on the morphology of the poly(methyl methacrylate) (PMMA)/polystyrene (PS) monodispersed composite particles produced by batch seeded dispersion polymerization of styrene with 1.64-μm-sized monodispersed PMMA seed particles in a methanol/water medium (4/1 w/w) was examined. In the PMMA/PS weight ratios of 3/1 and 2/1, the composite particles had a clear morphology consisting of a PMMA core and a PS shell. In the ratio of 1/1, a lot of small PS domains were observed in the PMMA core though the PS shell was still formed. By stepwise addition of styrene monomer, the formation of the small PS domain was depressed and complete core/shell morphology was formed. Absorption/release treatments of toluene into/from the PMMA/PS (1/1 w/w) composite particles resulted in a drastic morphological change from the core/shell structure to a multi- layered one. Received: 2 February 1999 Accepted in revised form: 7 April  相似文献   

3.
This work was focused on the influence of the morphology of composite natural rubber (NR)-based particles on the toughness of poly(styrene–co-acrylonitrile) (PSAN) blends. In order to be suitable for the reinforcement of PSAN blends, the NR-based particles were coated with a shell of crosslinked poly(methylmethacrylate) (PMMA). Furthermore, polystyrene (PS) subinclusions were introduced into the NR rubber core. PSAN blends were prepared by adding the wet latex directly into a twin screw-extruder. This new method allowed even tacky pure rubber particles to be dispersed as shown by transmission electron photomicrographs which confirmed the integrity of the soft particles after mixing. Solid NR particles or NR-based latex particles containing rigid PS subinclusions and no hard shell did not offer any impact improvement to PSAN. Only NR-based core–shell particles containing at least 25% PMMA in the shell toughened the brittle matrix. Prevulcanized NR-based latex particles which do not cavitate easily were less effective. Core–shell particles containing PS subinclusions within a natural rubber core allowed more effective use of the rubber phase. From the fracture surface morphology the failure mechanisms of PSAN blends containing the different composite NR particles could be deduced. Monodisperse poly(n-butylacrylate)-based core–shell particles were too small to toughen PSAN. However, a similar dependence of the fracture mechanisms on the morphology of the incorporated toughening agent could be established by scanning electron microscopy.  相似文献   

4.
Foamability and foam stability, emulsifying power, surface tension, and interfacial tension were investigated for Tween‐20 (polyoxyethylene sorbitan monolaurate), Tween‐60 (polyoxyethylene sorbitan monostearate), Tween‐80 (polyoxyethylene sorbitan monooleate), Arlacel‐60 (Sorbitan stearate), and Arlacel‐80 (Sorbitan oleate). Among all the surfactants tested for their foaming power and foamabilty, Arlacel‐60 and Arlacel‐80 showed the best results; the foaming power and foamability was found to be 100%. The surfactants having foam stability more than 50% can be considered as metastable and those less than 50% are considered as low‐stability foams. In case of surface tension and interfacial tension property measurements, Arlacel‐80 showed the best results. At 1% surfactant concentration, the surface tension and interfacial tension of Arlacel‐80 was found to be 29.9 dynes/cm and 1.1 dynes/cm at 30°C ambient temperature. Also, Arlacel‐60 was found to exhibit the best emulsifying power among all the surfactants tested. At 30°C, the emulsifying property of Arlacel‐60 was 6 hours.  相似文献   

5.
In this research, oil‐based Fe3O4 nanoparticles were prepared by means of coprecipitation method followed by a surface modification using lauric acid. Oil‐based Fe3O4 could disperse in styrene, and polystyrene/Fe3O4 (PS/Fe3O4) composite particles were prepared via miniemulsion polymerization in the presence of potassium peroxide (KPS) as an initiator, sodium dodecyl sulphate as a surfactant, hexadecane or sorbitan monolaurate(Span 20) as a costabilizer. The effects of Fe3O4 content, homogenization energy, amount of initiator, amount of surfactant and costabilizer on the conversion, size distributions of droplets and latex particles, nucleation mechanism and morphology of composite latex particles were investigated. The results showed that different nucleation mechanisms dominated during the course of reaction when polymerization conditions changed. The most important two key factors to influence the nucleation mechanism were homogenization energy and initiator. High homogenization energy provided critically stabilized size of droplets. Otherwise, secondary nucleation, including micellar and/or homogeneous nucleation, would take place rather than droplet nucleation when a water‐soluble initiator, KPS, was used. It resulted in two populations of latex particles, pure PS particles in smaller size and PS/Fe3O4 composite particles in larger size. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1014–1024, 2008  相似文献   

6.
Formulations with lyotropic liquid crystals were prepared from a Brazilian nut vegetable oil, guarana extract and combination of sorbitan monooleate (Span 80) and sorbitan monolaurate ethoxylate EO 20 (Tween 20) in the ratio 1:3 (surfactant component) and their physical–chemical aspects and rheological properties were determined. Compositions with liquid crystals were found in the pseudoternary diagram in a surfactant range of 70–90% and polarized light microscopy, small-angle x-ray scattering (SAXS) showed them to be lamellar. The preparations were furthermore characterized rheologically by shear stress shear rate sweeps finding plastic and pseudoplastic behavior without thixotropy. Electric conductivity and pH measurements demonstrated a potential for future application as dermatological delivery system of the active compounds in the Bertholletia excelsa and Paullinia cupana.   相似文献   

7.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

8.
In this work, solid lipid nanoparticles (SLN) have been prepared from water-in-oil-in-water double emulsion, using monocaprate as solid lipid, sorbitan monooleate (Span 80) and polyoxyethylene sorbitan monolaurate (Tween 20) as emulsifier, and puerarin as target drug. The morphology of SLN with drug loaded or not was investigated by the transmission electron microscope (TEM). The crystal order and structure of particles were studied by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD), respectively. The results indicate that the diameters of SLN with puerarin inside are larger than those without drugs. The analysis of WAXD and DSC shows that the state of crystallinity SLN prepared by double emulsion method was worse than that of SLN prepared by microemulsion. And also the drug-loaded SLN presents a less ordered crystallinity than the drug-free SLN. But both the drug-free and drug-loaded SLN exist in an amorphous state. The reasons of the phenomenon have been discussed.  相似文献   

9.
Summary: Submicron-sized monodisperse PS particles were prepared by dispersion polymerization of styrene in ionic liquids with poly(vinylpyrrolidone) as stabilizer. Seeded dispersion polymerization of MMA was subsequently carried out with PS seeds in [Bmim][BF4] to prepare PS/PMMA composite particles. Observation of the obtained particles of ultrathin cross-sections with a scanning and transmission electron microscope revealed that no secondary nucleation occurred during the seeded dispersion polymerization and that the particles have a core-shell morphology consisting of a PS core and a PMMA shell. Successful preparation of PS/PMMA composite particles in an ionic liquid has thus been demonstrated. Moreover, PS/PAA (PS-core/PAA-shell) composite particles were prepared by seeded dispersion polymerization in [DEME][TFSI], illustrating that hydrophobic/hydrophilic composite particles can be readily prepared in the ionic liquid.  相似文献   

10.
The preparation and characterization of polymer blends with structured natural rubber (NR)-based latex particles are presented. By a semicontinuous emulsion polymerization process, a natural rubber latex (prevulcanized or not) was coated with a shell of crosslinked polymethylmethacrylate (PMMA) or polystyrene (PS). Furthermore, core–shell latexes based on a natural rubber/crosslinked PS latex semi-interpenetrating network were synthesized in a batch process. These structured particles were incorporated as impact modifiers into a brittle polymer matrix using a Werner & Pfleiderer twin screw extruder. The mechanical properties of PS and PMMA blends with a series of the prepared latexes were investigated. In the case of PMMA blends, relatively simple core (NR)–shell (crosslinked PMMA) particles improved the mechanical properties of PMMA most effectively. An intermediate PS layer between the core and the shell or a natural rubber core with PS subinclusions allowed the E-modulus to be adjusted. The situation was different with the PS blends. Only core–shell particles based on NR-crosslinked PS latex semi-interpenetrating networks could effectively toughen PS. It appears that microdomains in the rubber phase allowed a modification of the crazing behavior. These inclusions were observed inside the NR particles by transmission electron microscopy. Transmission electron photomicrographs of PS and PMMA blends also revealed intact and well-dispersed particles. Scanning electron microscopy of fracture surfaces allowed us to distinguish PS blends reinforced with latex semi-interpenetrating network-based particles from blends with all other types of particles.  相似文献   

11.
Some factors contributing to the formation of an alternately multilayered structure of micron-sized, monodisperse poly(methyl methacrylate) (PMMA)/polystyrene (PS) (1/1, w/w) composite particles by reconstruction of the morphology with the solvent-absorbing/releasing method (SARM) were discussed. The original composite particles, which were produced by seeded dispersion polymerization (SDP) of styrene, had a core–shell structure. When PS/PMMA (1/1, w/w) composite particles produced by SDP of methyl methacrylate were treated by the SARM with toluene, the reconstructed morphology of the composite particles was not the multilayered structure but a hemisphere (or core–shell). The PS/PMMA composite particle contained less than 10 wt% PMMA- g-PS. On the other hand, the PMMA/PS composite particles contained about 40 wt% graft polymer. The graft polymer would exist at the interfaces of the alternate multilayers and decrease their interfacial energy. This was the main reason why the alternately multilayered structure was constructed by the SARM, though the total interfacial area between PMMA and PS layers in the multilayered particle is much larger than that of the hemisphere (or core–shell).  相似文献   

12.
Photon correlation spectroscopy and freeze-fracture electron microscopy have been used to determine the ability of a range of micelle-forming, polyoxyethylene (20) sorbitan monoesters (Tweens) to solubilise vesicles prepared from phosphatidylcholines of different acyl chain lengths and degrees of saturation with a view to rationalising (in terms of their membrane toxicity) which of the micelle-forming surfactants to use as drug delivery vehicles. The phosphatidylcholines used were dimyristoyl-, dipalmitoyl-, distearoyl- and dioleoylphosphatidylcholine (DMPC, DPPC, DSPC and DOPC, respectively) while the nonionic polyoxyethylene sorbitan monoesters studied were polyoxyethylene (20) sorbitan monolaurate (Tween 20), a 9:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 40), a 1:1 weight ratio mixture of polyoxyethylene (20) sorbitan monopalmitate and monostearate (Tween 60), and polyoxyethylene (20) sorbitan monooleate (Tween 80). The ability of the Tween micelles to solubilise phospholipid vesicles was found to depend both upon the length of the surfactant acyl chain and the length of the acyl chains of the phospholipid comprising the vesicle. Vesicles composed of long saturated diacyl chain phospholipids, namely DSPC and DPPC, were the most resistant to solubilisation, while those prepared from the shorter acyl chained DMPC were more readily solubilised. In terms of their solubilisation behaviour, vesicles made from phospholipids containing long, unsaturated acyl chains, namely DOPC behaved more akin to those vesicles prepared from DMPC. None of the Tween surfactants were effective at solubilising vesicles prepared from DPPC or DSPC. In contrast, there were clear differences in the ability of the various surfactants to solubilise vesicles prepared from DMPC and DOPC, in that micelles formed from Tween 20 were the most effective solubilising agent while those formed by Tween 60 were the least effective. As a consequence of these observations it was considered that Tween 60 was the surfactant least likely to cause membrane damage in vivo and, therefore, is the most suitable surfactant for use as a micellar drug delivery vehicle.  相似文献   

13.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

14.
Cinnamic acid (CA) was covalently attached to nonionic surfactants by condensation reaction. The mass and the molar extinction coefficient of CA residue of each conjugate did not markedly deviate from those of free CA, indicating CA could absorb the UV light after being conjugated to the surfactants. When the concentration of the conjugates in aqueous phase was 0.1% and 1.0%, mineral oil could readily be emulsified by polyoxyehtylene(20) cetyl ether–CA conjugate (CE20–CA), polyoxyethylene(20) oleyl ether–CA conjugate (OE20–CA), and polyoxyehtylene(20) sorbitan monolaurate–CA conjugate (Tween 20–CA). The extinction coefficients of the surfactant–CA conjugates contained in O/W emulsion did not markedly deviate from those of the conjugates dissolved in water, suggesting that the conjugate could maintain their extinction coefficients when they coexisted with oil droplets. According to the result of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the viability of cell (BALB/c 3T3 clone A31) was greater than 80% for all the surfactant–CA conjugates tested when the conjugate concentration was 0.2%. It is believed that CE20–CA, OE20–CA, and Tween 20–CA could be used as an emulsifier which absorbs UV light effectively.  相似文献   

15.
The Effect of Temperature on Sorbitan Surfactant Monolayers   总被引:1,自引:0,他引:1  
The effect of temperature on four sorbitan ester (Span 20, sorbitan monolaurate; Span 40, sorbitan monopalmitate; Span 60, sorbitan monostearate; and Span 80, sorbitan monooleate) monolayers was analyzed. The covered temperature range was from 22 to 42 degrees C. Surface pressure-molecular area isotherms were measured with a Langmuir-type instrument. As the temperature was increased, the monolayers expanded more. This change can also be seen from the surface compressional modulus that was lowered as the temperature was increased. Also, the collapse pressure was lowered as the temperature was increased. Copyright 2001 Academic Press.  相似文献   

16.
The effects of the concentration of polyoxyethylene octylphenyl ether (OP-10) as a nonionic surfactant and the molecular weight of polymers (polystyrene (PS) and poly(methyl methacrylate) (PMMA)) on the morphology of anisotropic PS/PMMA composite particles were investigated. In the case of polymers with lower molecular weight (M w ≈ 6.0 × 104 g/mol), the PS/PMMA composite particles have dimple, via acorn, to hemispherical shapes along with the increase of the OP-10 concentration. On the other hand, when the polymers have higher molecular weight (M w ≈ 3.3 × 105 g/mol), the morphology of PS/PMMA composite particles changed from dimple, via hemispherical, to snowman-like structure while the concentration of OP-10 was increased. Furthermore, thermodynamic analysis was first simply made by spreading coefficients, and the results indicated that both the concentration of OP-10 aqueous solution and the molecular weight of polymers were very important to the final morphology of anisotropic composite particles.  相似文献   

17.
The effect of molecular weight on the morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles was investigated. PS/PMMA composite particles with different molecular weights (M*=MwPS+MwPMMA)/2 approximately 2x10(4)-1x10(6) g.mol(-1)) were prepared by the release of toluene (T) from PS/PMMA/T (1/1/24, w/w/w) droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether nonionic surfactant (Emulgen 911). As T evaporated, the spherical droplets phase separated, resulting in snowmanlike composite particles with Janus morphology. The nonspherical shape was closely related to the morphology, which depended on M*. The interfacial tension between the phase-separated PS and PMMA phases increased with an increase in M*, and this would allow the formation of the snowmanlike shape to decrease the interfacial area between the PS and the PMMA phases.  相似文献   

18.
A novel method for preparing a finely dispersed oil-in-water emulsion is proposed. Octanoic acid dissolved in water at a high temperature of 220 or 230 degrees C at 15 MPa was combined with an aqueous solution of a surfactant and then the mixture was cooled. When a nonionic surfactant, decaglycerol monolaurate (ML-750) or polyoxyethylene sorbitan monolaurate (Tween 20), was used, fine emulsions with a median oil droplet diameter of 100 nm or less were successfully prepared at ML-750 and Tween 20 concentrations of 0.083% (w/v) and 0.042%, respectively, or higher. The diameters were much smaller than those of oil droplets prepared by the conventional homogenization method using a rotor/stator homogenizer. However, an anionic surfactant, sodium dodecyl sulfate, was not adequate for the preparation of such fine emulsions by the proposed method. Although the interfacial tensions between octanoic acid and the surfactant solutions were measured at different temperatures, they were not an indication for selecting a surfactant for the successful preparation of the fine emulsion by the proposed method.  相似文献   

19.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

20.
 Micron-sized monodispersed polymethyl methacrylate (PMMA)/polystyrene (PS) (PMMA/PS=2/1, wt ratio) composite particles consisting of PMMA-core and PS-shell were successfully produced by seeded dispersion polymerization of styrene in a methanol/water medium in the presence of about 2 μm-sized monodispersed PMMA particles. From the view point of thermodynamic equilibrium, such a morphology is difficult to form by usual seeded polymerization in a polar medium such as water. It is concluded that seeded dispersion polymerization in which almost all monomers and initiators exist in the medium has an advantage to produce core/shell polymer particles in which polymer layers accumulate in their order of the production regardless of the hydrophobicity of polymers, because of high viscosity in polymerizing particles. Received: 9 December 1996 Accepted: 26 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号