首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanostructures of lysozyme molecules adsorbed to mica were generated by the tip of an atomic force microscope in contact, tapping, and force-distance mode in aqueous solution. In contact mode at high ionic strength and adjusted lysozyme concentration a monolayer of defined pattern and orientation could be formed by the scan process of the tip. A lysozyme monolayer with minimal pattern size of about 60 nm was achieved by line scan. At larger loading forces besides a monolayer also 3D-aggregates of lysozyme molecules could be generated. In force-distance mode the volume of 3D-aggregates grows with increasing generation time, lysozyme concentration in the bulk phase, loading force, and frequency of up- and down-movement of the substrate toward the fixed cantilever. In tapping mode 3D-aggregates could be generated as well. It is postulated that reduction of electrostatic interaction between the oppositely charged lysozyme molecules and mica surface by sufficient high ionic strength is essential for monolayer formation. It is discussed that for the underlying mechanism of monolayer generation in contact mode lysozyme molecules of the bulk phase adsorb to the tip, become pulled off and attach to the mica surface by the scan process of the tip.  相似文献   

2.
Atomic force microscopy (AFM) has been used to determine the surface energy of chemically modified surfaces at a local scale. In order to achieve this aim, it was necessary to graft both the AFM tip and the substrate with the same chemical functional groups. Two different organothiols terminated either by hydrophilic or hydrophobic chemical functionalities were used. Grafting process classically reported shows that after UV/ozone treatment for 30 min, the tip is coated by thermal deposition with 4‐5‐nm‐thick titanium layer followed by a 30‐nm‐thick gold layer. Finally, the tip is grafted by organothiols. The thickness of the layer deposited on the tip is of the same order of magnitude as the tip radius. To avoid the use of Ti and to decrease the thickness of the gold layer, we have developed a new way of grafting by using organic molecules like (3‐mercaptopropyl)triethoxysilane (MPS) as a linkage agent. Then this way of grafting was checked. Finally, AFM force‐distance curves, between grafted tips and chemically modified surface, were carried out in contact mode. Calibration of the various parts of the apparatus and especially of the cantilever (spring constant and tip radius) is of major importance to reach quantitative data. Finally, by applying a suitable theory of contact, we were able to determine the surface energy of our system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Dynamic simulations of adhesion and friction in chemical force microscopy   总被引:1,自引:0,他引:1  
A hybrid molecular simulation approach has been applied to investigate dynamic adhesion and friction between a chemical force microscope (CFM) tip and a substrate, both modified by self-assembled monolayers (SAMs) with hydrophobic methyl (CH(3)) or hydrophilic hydroxyl (OH) terminal groups. The method combines a dynamic model for the CFM tip-cantilever system and a molecular dynamics (MD) relaxation technique for SAMs on Au(111) at room temperature. The hybrid simulation method allows one to simulate force-distance curves (or adhesion) and friction loops (or friction coefficient) in the CFM on the experimental time scale for the first time. The simulation results also provide valuable molecular information at the interface that is not accessible in CFM experiments, such as the actual tip position with respect to the cantilever support position, molecular and hydrogen-bonding structures at the interface, and load distributions among different molecular chains (or single-molecule forces). Results show that the adhesion force and friction coefficient for the OH/OH contact pair are much larger than those for the CH(3)/CH(3) pair due to the formation of hydrogen bonds. During the retraction of a CFM tip from a surface, the CFM tip is away from the sample surface slightly while the spring undergoes dramatic elongation in the normal direction before rupture occurs. Single-molecule forces are distributed unevenly at the contact area. Surface energies calculated for functionalized surfaces compare well with those determined by experiments.  相似文献   

4.
The dynamic response of amplitude-modulated atomic force microscopy (AM-AFM) is studied at the solid/water interface with respect to changes in ionic concentration, applied surface potential, and surface protonation. Each affects the electric double layer in the solution, charge on the tip and the sample surface, and thus the forces affecting the dynamic response. A theoretical model is developed to relate the effective stiffness and hydrodynamic damping of the AFM cantilever that is due to the tip/surface interaction with the phase and amplitude signals measured in the AM-AFM experiments. The phase and amplitude of an oscillating cantilever are measured as a function of tip-sample distance in three experiments: mica surface in potassium nitrate solutions with different concentrations, biased gold surface in potassium nitrate solution, and carboxylic acid-terminated self-assembled monolayers (SAMs) on gold in potassium nitrate pH buffers. Results show that, over the range where the higher harmonic modes of the oscillation are negligible, the effective stiffness of the AFM cantilever increases to a maximum as the tip approaches the surface before declining again as a result of the repulsive electrical double layer interaction. For attractive electrical double-layer interactions, the effective stiffness declines monotonically as the tip approaches the surface. Similarly, the hydrodynamic damping of the tip increases and then decreases as the tip approaches the solid/water interface, with the magnitude depending on the species present in the solution.  相似文献   

5.
A non‐optical force sensor that allows operation both in lateral (shear) and in vertical (tapping) force detection modes has been introduced for dynamic tip–sample distance regulation in scanning near‐field optical microscopy (SNOM) of biological samples. The sensor is based on a rectangular bimorph cantilever consisting of two thin piezoceramic layers bonded to a brass centre shim. One of the piezo layers serves as the probe dither and another as the responder of the sensed forces. The sensor is driven with a home‐made Q‐control electronics so that its sensitivity and bandwidth can be adjusted. The dynamics, characteristics and design considerations of the sensor are theoretically and experimentally discussed. Driving the bimorph cantilever at its eigenfrequency with appropriate force feedback allows one to obtain a quality factor (Q‐factor) up to 103 in water, suitable for different sample softness and imaging environments. The high sensitivity of the sensor is demonstrated both by shear force and by tapping mode imaging of soft biological samples in their natural state. Near‐field optical resolution of better than 100 nm on red blood cells in water has been obtained. The experimental results suggest that this SNOM sensor would be a promising set‐up for biological applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.  相似文献   

7.
Chemical force microscopy (CFM) was used to characterise the surface of pine and beefwood with atomic force microscopy (AFM) tips coated with different compatibilisers. With the resulting force images, potential binding sites for compatibilisers, used in wood–plastic composites (WPC) to enhance adhesion between two relatively incompatible phases, were localised and quantified. Tips were coated with two commercially available polymers namely ethylene vinyl alcohol (EVOH) and polyethylene‐grafted maleic anhydride (PE‐g‐MA). It could be observed that the interaction forces between the EVOH coated tip and the wood surface was highly species sensitive, whereas adhesive forces measured between the PE‐g‐MA coated tip and the wood surface were comparable for both wood species. The force maps show that wood species differ in the distribution of functional groups, and the force histograms show that the frequency distribution of the adhesive forces varied for the two wood species. The adhesive force maps clearly show a difference between wood/compatibiliser systems, and the differences can be related to the chemical composition of the wood species. The results confirm that not all compatibilisers are equally suitable for all wood species and these results were confirmed by mechanical tensile tests of WPC systems in a related study. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In atomic force microscopy, the cantilevers are mounted under a certain tilt angle alpha with respect to the sample surface. In this paper, we show that this increases the effective spring constant by typically 10-20%. The effective spring constant of a rectangular cantilever of length L can be obtained by dividing the measured spring constant by cos2 alpha(1 - 2D tan alpha/L). Here, alpha is the tilt angle and D is the size of the tip. In colloidal probe experiments, D has to be replaced by the radius of the attached particle. To determine the effect of tilt experimentally, the adhesion force between spherical borosilicate particles and planar silicon oxide surfaces was measured at tilt angles between 0 degrees and 35 degrees. The experiments revealed a significant decrease of the mean apparent adhesion force with a tilt of typically 20-30% at alpha = 20 degrees. In addition, they demonstrate that the adhesion depends drastically on the precise position of contact on the particle surface.  相似文献   

9.
采用扫描电子显微镜(SEM)观察了双带闪蝶(Morpho Achilles)翅膀表面的微观形貌, 通过样品的表观接触角表征了其浸润性, 采用高敏感性微电力学天平比较了水滴在蝴蝶翅膀表面不同方向运动时受到的黏附力. 实验结果表明, 水滴沿着干燥的蝴蝶翅膀鳞片堆叠方向运动时受到的黏附力要明显小于其它方向运动时受到的力, 且受力较稳定; 当蝴蝶翅膀被水滴浸润后, 水滴沿着湿润的蝴蝶翅膀鳞片堆叠方向运动时受到的黏附力接近甚至大于逆着鳞片堆叠方向运动时受到的力.  相似文献   

10.
Cu-coated stainless steel surfaces containing micro- and nanoscale binary structures with different surface roughness were successfully fabricated by means of a facile one-step electroless plating technology. The resulting surfaces were modified by the low free energy material HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane). The experimental results of wettability exhibit that such unmodified surfaces have a strong adhesive force to water droplets, and their contact angles increase with increasing surface roughness, whereas the modified surfaces by HFTHTMS show the superhydrophobic characteristic with contact angles higher than 150° and sliding angles lower than 5°.  相似文献   

11.
张晋红  石奎  徐鹏  李倩  薛龙建 《应用化学》2022,39(1):188-195
仿生超疏水材料在自清洁、防雾抗冰、油水分离、集水等领域有着重要应用;而在不同疏水状态之间的转换将大大促进仿生超疏水材料在智能技术领域的应用.利用软印刷技术将玫瑰花表面微观结构转印到聚氨酯弹性体PU膜表面,利用机械应力实现表面微结构的动态实时调控,实现了表面微观结构在各向同性与各向异性之间的可逆转换;利用毛细管投影传感技...  相似文献   

12.
Cu-coated stainless steel surfaces containing micro- and nanoscale binary structures having different surface roughness were successfully fabricated by means of a facile one-step electroless plating technology, and the resulting surfaces were modified by the low free energy material HFTHTMS (HFTHTMS = (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane). The experimental results of wettability exhibit that such unmodified surfaces have a strong adhesive force to water droplets, and their contact angles increase with increasing surface roughness, whereas the modified surfaces by HFTHTMS show the superhydrophobic characteristic with contact angles higher than 150° and sliding angles lower than 5°.  相似文献   

13.
In this paper, the behavior of polystyrene and glass particles on a copper electrode during the electrodeposition of copper was studied using an atomic force microscope (AFM). Polystyrene or glass particles glued to the tip of the AFM cantilever were kept in contact with the surface of the electrode. The surface forces between the polystyrene or glass particle and the copper electrode were measured before, during, and after electrodeposition. These experiments revealed that glass particles do not make contact with the electrode, probably due to the repulsive hydration force. Polystyrene particles, on the other hand, make contact with the electrode, due to the attractive hydrophobic force. The AFM experiments were correlated with sedimentation co-deposition experiments of polystyrene and glass particles with copper. It was found that 80% of the polystyrene particles added to the plating solution incorporated with copper, while only 0.25% of the glass particles co-deposited under the same conditions.  相似文献   

14.
Direct measurements of the interaction forces between a spherical silica particle and a small air bubble have been conducted in aqueous electrolyte solutions by using an atomic force microscope (AFM). The silica particle was hydrophobized with a silanating reagent, and the interaction forces were measured by using several particles with different surface hydrophobicities. In the measured force curves, a repulsive force was observed at large separation distances as the particle moved towards the bubble. The origin of the repulsive force was attributed to an electrostatic double-layer force because both the particle and bubble were negatively charged. After the repulsive force, an extremely long-range attractive force acted between the surfaces. These results indicate that the intervening thin water film between the particle and bubble rapidly collapsed, resulting in the particle penetrating the bubble.

The instability of the thin water film between the surfaces suggests the existence of an additional attractive force. By comparing the repulsive forces of the obtained force curves with the DLVO theory, the rupture thickness was estimated. The hydrophobicity of the particle did not significantly change the rupture thickness, whereas the pH of the solution is considered to be a critical factor.  相似文献   


15.
Using an atomic force microscope (AFM) the interaction between an AFM tip and a planar silicon oxide surface has been measured across poly(dimethylsiloxane) (PDMS, MW = 18 000). Due to the small radius of curvature of the AFM tip the hydrodynamic repulsion of the tip was negligible and forces could be measured in equilibrium. This is confirmed by the fact that force-versus-distance curves measured at different approaching velocities were indistinguishable. In equilibrium a repulsive force was observed which could best be described by a power law, F ∝ 1/d2.5 where d is the distance.  相似文献   

16.
We have monitored deflection-distance curves with an atomic force microscope (AFM) in contact mode, with a silicon nitride tip, on chemically modified silicon wafers, in the air. The wafers were modified on their surface by grafting self-assembled monolayers (SAMs) of different functional groups such as methyl, ester, amine, or methyl fluoride. A chemically modified surface with a functionalized hydroxyl group was also considered. Qualitative analysis allowed us to compare adhesive forces versus chemical features and surface energy. The systematic calibration procedure of the AFM measurements was performed to produce quantitative data. Our results show that the experimentally determined adhesive force or thermodynamic work of adhesion increases linearly with the total surface energy determined with contact angles measured with different liquids. The influence of capillary condensation of atmospheric water vapor at the tip-sample interface on the measured forces is discussed. Quantitative assessment values were used to determine in situ the SAM-tip thermodynamic work of adhesion on a local scale, which have been found to be in good agreement with quoted values. Finally, the determination of the surface energy of the silicon wafer deduced from the thermodynamic work of adhesion is also proposed and compared with the theoretical value.  相似文献   

17.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

18.
Recent experimental developments have enabled the measurement of dynamical forces between two moving liquid drops in solution using an atomic force microscope (AFM). The drop sizes, interfacial tension, and approach velocities used in the experiments are in a regime where surface forces, hydrodynamics, and drop deformation are all significant. A detailed theoretical model of the experimental setup which accounts for surface forces, hydrodynamic interactions, droplet deformation, and AFM cantilever deflection has been developed. In agreement with experimental observations, the calculated force curves show pseudo-constant compliance regions due to drop flattening, as well as attractive pull-off forces due mainly to hydrodynamic lubrication forces.  相似文献   

19.
We have fabricated polymer tips for atomic force microscopy in order to elucidate the effects of tip length and shape on cantilever vibration damping in liquids. The vibration damping is investigated by measuring the vibration amplitude of cantilevers as a function of tip-sample distance. The cantilever with a short tip provides a higher damping effect over long tip-sample distances. When the vibration amplitude was rescaled to show the effect of the cantilever width on oscillation damping, the vibration amplitude of cantilevers with various tip lengths was similarly obtained in a long distance range over 50 μm. This similarity is explained by an acoustic damping model in which an acoustic wave is generated by the cantilever. Finally, the results indicate a cantilever with a sufficiently long tip compared to the cantilever width can dramatically reduce the long-range damping effect in a liquid environment.  相似文献   

20.
We report that varying the contact force in force spectroscopy results in a significant shift in DNA unbinding forces, measured from short oligonucleotides using a PicoForce microscope. The contact force between a 30-mer complementary DNA-coated probe and surface was varied from 100 pN to 10 nN, resulting in a significant shift in the most abundant unbinding force measured between the duplex. When contact forces were set at 200 pN or less, which is generally considered to be a low contact force region for biomolecular force spectroscopy studies, the shift in DNA unbinding forces was significant with changes in contact force. The effect of the salt concentration on the DNA unbinding forces was also examined for a range of salt concentrations from 5 to 500 mM because the presence of salt ions is necessary to facilitate the hybridization process. Although an increase in salt concentration resulted in the facilitation of DNA multiple binding events during force spectroscopy measurements, no significant shift in unbinding forces was observed. Our experiment demonstrates that the wide variation in DNA unbinding forces reported in the literature (50-600 pN) for short oligonucleotides can be accounted for by the different contact forces used and shows little or no effect of the salt concentration used in those studies. Furthermore, this study demonstrates the importance of reporting contact forces in force spectroscopy measurements for quantitative comparisons between different biomolecular systems, especially for noncovalent-type interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号