首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers has been carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of the monomer structure on the frontal behavior of these monomers have been examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers display a prolonged induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy is required to induce the further reaction of these species with a consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations have been observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior has been found to be related to their ability to stabilize the secondary oxonium ion intermediates through multiple hydrogen‐bonding effects to the ether groups present in the molecule. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6435–6448, 2006  相似文献   

2.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers was carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of various experimental parameters, such as the photoinitiator type and concentration, as well as the effects of the monomer structure on the frontal behavior of these monomers were examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers displayed a prominent induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy was required to induce the further reaction of these species with the consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations were observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior was found to be related to their ability to stabilize the secondary oxonium ion intermediates through hydrogen‐bonding effects. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3036–3052, 2006  相似文献   

3.
The ability of certain alkyl substituted epoxides to accelerate the photoinitiated cationic ring‐opening polymerizations of oxetane monomers by substantially reducing or eliminating the induction period altogether has been termed by us “kick‐starting.” In this communication, the rates of photopolymerization of several model “kick‐started” oxetane systems were quantified and compared with the analogous biscycloaliphatic epoxide monomer, 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexanecarboxylate (ERL). It has been found that the “kick‐started” systems undergo photopolymerization at rates that are at least two‐fold faster than ERL. These results suggest that “kick‐started” oxetanes could replace ERL in many applications in which high speed ultraviolet induced crosslinking photopolymerizations are carried out. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 586–593  相似文献   

4.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
3,3‐Disubstituted oxetane monomers were found to undergo rapid, exothermic redox initiated cationic ring‐opening polymerization in the presence of a diaryliodonium or triarylsulfonium salt oxidizing agent and a hydrosilane reducing agent. The redox reaction requires a noble metal complex as a catalyst and several potential catalysts were evaluated. The palladium complex, Cl2(COD)PdII, was observed to provide good shelf life stability while, at the same time, affording high reactivity in the presence of a variety of hydrosilane reducing agents. A range of structurally diverse oxetane monomers undergo polymerization under redox cationic conditions. When a small amount of an alkylated epoxide was added as a “kick‐start” accelerator to these same oxetanes, the redox initiated cationic polymerizations were extraordinarily rapid owing to the marked reduction in the induction period. A mechanistic interpretation of these results is offered. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1854–1861  相似文献   

6.
The addition of sulfides has a marked effect on the rates of onium salt induced photoinitiated cationic ring‐opening polymerizations of epoxide monomers. Various behaviors have been observed that depend on the structure of the sulfide. Dialkyl sulfides strongly inhibit the photopolymerizations of these monomers, whereas diaryl sulfides have a retarding effect on the photopolymerizations. Real‐time infrared spectroscopy and optical pyrometry have been employed as analytical methods to probe the kinetic effects of the addition of a variety of sulfides on cationic epoxide ring‐opening photopolymerizations. A mechanism is proposed that involves the formation of sulfonium salts as intermediates. The observations made in this study have important implications for cationic photopolymerizations in general and for photoinitiated cationic ring‐opening polymerizations of epoxides in particular. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2504–2519, 2005  相似文献   

7.
Organotellurium‐mediated living radical polymerizations (TERPs) and organostibine‐mediated living radical polymerizations (SBRPs) provide well‐defined polymers with a variety of polar functional groups via degenerative chain‐transfer polymerization. The high controllability of these polymerizations can be attributed to the rapid degenerative‐transfer process between the polymer‐end radicals and corresponding dormant species. The versatility of the methods allows the synthesis of AB diblock, ABA triblock, and ABC triblock copolymers by the successive addition of different monomers. This review summarizes the current status of TERP and SBRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1–12, 2006  相似文献   

8.
The photoinitiated cationic ring‐opening polymerizations of certain epoxides and 3,3‐disubstituted oxetanes display the characteristics of frontal polymerizations. When irradiated with UV light, these monomers display a marked induction period, during which little conversion of the monomer to the polymer takes place. The local application of heat to an irradiated monomer sample results in polymerization that occurs as a front propagating rapidly throughout the entire reaction mass. For the characterization of these frontal polymerizations, the use of a new monitoring technique, employing optical pyrometry, has been instituted. This method provides a simple, rapid means of following these fast polymerizations and quantitatively determining their frontal velocities. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1630–1646, 2004  相似文献   

9.
The irradiation of hybrid photopolymer systems consisting of a free radically polymerizable multifunctional acrylate monomer and a cationically polymerizable epoxide or oxetane monomer was conducted under conditions where only the free radical polymerization takes place. This results in the formation of a free‐standing polyacrylate network film containing quiescent oxonium ions along with the unreacted cyclic ether monomer. The subsequent application of a point source of heat to the film ignites a cationic ring‐opening frontal polymerization that emanates from that site and propagates to all portions of the irradiated sample. This article examines the impact of various molecular structural and experimental parameters on these novel hybrid frontal polymerizations that produce interpenetrating network polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4331–4340, 2007  相似文献   

10.
Infrared (IR) thermography was employed to monitor temperature changes during the copolymerization of a spiroorthoester monomer with an oxetane monomer initiated with a benzyl sulfonium salt. The temperature changes in the polymerizations decreased with the increase of the initial feed ratios of the spiroorthocarbonate monomer. For instance, the temperature in the copolymerization of the equimolar mixture of both of the monomers increased only ~1 °C, whereas that in the homopolymerization of the oxetane monomer increased more than 20 °C. This result indicates that the copolymerization employing spiroorthocarbonate monomers effectively suppress temperature increase, which are responsible to shrinkage during cooling. The suppression of polymerization shrinkage by spiroorthocarbonate was also confirmed by density measurement of the polymers using a gas pycnometer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1388–1393, 2007.  相似文献   

11.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

12.
Multifunctional alkyl glycidyl ether and oxetane monomers are usually deemed to be poorly reactive and are consequently of limited use for high speed photocuring applications. However, these monomers can be made to undergo exceedingly rapid exothermic photopolymerization when combined with a multifunctional acrylate monomer and a corresponding free radical photoinitiator. Under optimum UV irradiation conditions, these hybrid photopolymerizations take place rapidly and substantially without an induction period. A mechanism was proposed on the basis of thermal acceleration of the cationic ring‐opening polymerizations induced by the fast exothermic free radical acrylate photopolymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3759–3769, 2007  相似文献   

13.

The effects of temperature on the photoinitiated cationic ring‐opening polymerizations of a number of different epoxide monomers were studied with the aid of a modified optical pyrometer instrument. Depending on the structures of the epoxide monomer, various behaviors were observed. The results were interpreted as due to steric and electronic features inherent in the structures of the monomers that affect the stabilization of the secondary oxonium ions, which are formed as intermediates in these polymerizations. At one extreme, cycloaliphatic epoxides such as cyclohexene oxide give highly reactive oxonium intermediates that exhibit high rates of polymerization even at subambient temperatures. At the other extreme, alkyl glycidyl ethers produce oxonium ion intermediates, which are so stable that they do not spontaneously react to form polymer at room temperature. By manipulation of the structure of the epoxide monomer, novel monomers with tailored reactivities can be prepared.  相似文献   

14.
In the presence of small amounts of 2,2‐dialkyl‐, 2,2,3‐trialkyl‐, or 2,2,3,3‐tetraalkyl substituted epoxides such as isobutylene oxide, 1,2‐limonene oxide, and 2,2,3,3,‐tetramethyl oxirane, the photoinitiated cationic ring‐opening polymerizations of 3,3‐disubstituted oxetanes are dramatically accelerated. The acceleration affect was attributed to an increase in the rate of the initiation step of these latter monomers. Both mono‐ and disubstituted oxetane monomers are similarly accelerated by the above‐mentioned epoxides to give crosslinked network polymers. The potential for the use of such “kick‐started” systems in applications such as coatings, adhesives, printing inks, dental composites and in three‐dimensional imaging is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2934–2946  相似文献   

15.
Diaryliodonium salts undergo facile reduction by the dialkylborane, 9‐BBN. The combination of these two reagents constitutes a redox couple that can be employed as a convenient and versatile initiator system for the cationic polymerizations of styrenic monomers, vinyl ethers and the ring‐opening polymerizations of cyclic ethers and acetals including; epoxides, oxetanes, tetrahydrofuran, and 1,3,5‐trioxane. The polymerizations of these monomers can be carried out in either neat monomer or under solution conditions. Typically, the redox cationic polymerizations of the above monomers are rapid and exothermic. Optical pyrometry (infrared thermography) was employed as a convenient method with which to monitor and optimize the aforementioned redox initiated cationic polymerizations. Studies of the effects of variations in the structure and concentrations of the diaryliodonium salt and 9‐BBN on the polymerizations of various monomers were carried out. A mechanism for the redox cationic initiation of the polymerizations was proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5639–5651, 2009  相似文献   

16.
Phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were prepared by the regioselective addition reaction of glycidyl vinyl ether (GVE) or 1‐propenyl glycidyl ether with diaryl phosphonates with quaternary onium salts as catalysts. The reaction of GVE with bis(4‐chlorophenyl) phenylphosphonate gave bis[1‐(4‐chlorophenoxy methyl)‐2‐(vinyloxy)ethyl]phenylphosphonate in a 68% yield. The structures of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were confirmed by IR and 1H NMR spectra and elemental analysis. Photoinitiated cationic polymerizations of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were investigated with photoacid generators. The polymerization of vinyl ether groups and 1‐propenyl ether groups of the obtained monomers proceeded very smoothly with a sulfonium‐type cationic photoinitiator, bis[4‐(diphenylsulfonio)phenyl]sulfide‐bis(hexafluorophosphate), upon UV irradiation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3105–3115, 2005  相似文献   

17.
Natural human hair was successfully modified by the graft polymerization of trimethylene carbonate, β‐propiolactone, ε‐caprolactone, glycidol, ε‐caprolactam, and 5,5‐dimethyl‐1,3‐dioxane‐2‐thione. In contrast, we could not modify natural human hair by the graft polymerization of oxetane under similar conditions. The model reaction suggested that the main initiating species in these polymerizations were the amino, thiol, and hydroxyl groups in hair, which could induce ring‐opening polymerization. Among the tested monomers, β‐propiolactone was most effective for hair modification with its graft polymer, whose concentration was as high as 0.5 g/g of hair though polymerization under mild conditions. The effects of the hair pretreatment and polymerization temperature on the weight ratio of the grafted polymers were also investigated. Hair modified by grafted polymers was characterized with scanning electron microscopy and Fourier transform infrared measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 736–744, 2007  相似文献   

18.
In TEMPO (2,2,6,6,‐tetramethyl‐1‐piperidinyloxy) controlled styrene radical polymerizations, the thermal self‐initiation reaction of styrene monomer is one of the main sources for the deviations from ideal living polymerization. However, it is also important because it continuously generates radicals to compensate for the loss of radicals caused by the termination reactions and thereby maintains a reasonable reaction rate. In this report, different initial TEMPO concentrations were used in styrene miniemulsion polymerizations without any added initiator. The consumption rate of TEMPO or radical generation rate was calculated from the length of the induction period and the increasing total number of polymer chains. It was found that there is little difference between the miniemulsions and the corresponding bulk systems in terms of the length of the induction period, which increases linearly with initial TEMPO concentration. After the induction period, the consumption rate of TEMPO or radical generation rate was reduced to a lower level, and a faster initial polymerization rate was found in the bulk system compared to the corresponding miniemulsion system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4921–4932, 2004  相似文献   

19.
Curcumin, a naturally occurring, intensely yellow dye extracted from the spice turmeric, is an efficient photosensitizer for diaryliodonium salt photoinitiators at wavelengths ranging from 340 to 535 nm. With curcumin as a photosensitizer, it is possible to carry out the cationic photopolymerization of a wide variety of epoxide, oxetane, and vinyl monomers with long‐wavelength UV and visible light. An example of the photopolymerization of an epoxide monomer with ambient solar irradiation is provided. Several other curcumin analogues were synthesized, and their use as photosensitizers is examined. With such photosensitizers, the range of spectral sensitivity can be extended well into the visible region of the electromagnetic spectrum. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5217–5231, 2005  相似文献   

20.
A series of epoxy‐functional telechelic oligomers containing oxetane end groups have been synthesized. The precursor monomer, extracted from outer Birch bark, was first polymerized through enzyme‐catalyzed esterification to form oligomers having epoxy and/or oxetane groups in the structures. The oligoesters were subsequently crosslinked through cationic polymerization either by epoxy or oxetane homopolymerization or copolymerization when both functionalities were present. A study of the polymerizations of the resins was performed “in situ” using real‐time Fourier transform infrared spectroscopy revealing a preferred copolymerization when compared with the homopolymerization. By tailoring the different structures, it was possible to control the final mechanical properties of the networks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2258–2266  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号