首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Let P n be the order determined by taking a random graph G on {1, 2,..., n}, directing the edges from the lesser vertex to the greater (as integers), and then taking the transitive closure of this relation. We call such and ordered set a random graph order. We show that there exist constants c, and °, such that the expected height and set up number of P n are sharply concentrated around cn and °n respectively. We obtain the estimates: .565<c<.610, and .034<°<.289. We also discuss the width, dimension, and first-order properties of P n.  相似文献   

2.
We consider the problem of finding a sparse set of edges containing the minimum spanning tree (MST) of a random subgraph of G with high probability. The two random models that we consider are subgraphs induced by a random subset of vertices, each vertex included independently with probability p, and subgraphs generated as a random subset of edges, each edge with probability p. Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n, and let b = 1/(1 ? p). We show that in both random models, for any weighted graph G, there is a set of edges Q of cardinality O(n logbn) that contains the minimum spanning tree of a random subgraph of G with high probability. This result is asymptotically optimal. As a consequence, we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G with some k vertices (or edges) removed. More generally, we show a bound of O(n logbn) on the size of a covering set in a matroid of rank n, which contains the minimum‐weight basis of a random subset with high probability. Also, we give a randomized algorithm that calls an MST subroutine only a polylogarithmic number of times and finds the covering set with high probability. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

3.
A random suffix search tree is a binary search tree constructed for the suffixes Xi = 0 · BiBi+1Bi+2… of a sequence B1, B2, B3, … of independent identically distributed random b‐ary digits Bj. Let Dn denote the depth of the node for Xn in this tree when B1 is uniform on ?b. We show that for any value of b > 1, ??Dn = 2 log n + O(log2log n), just as for the random binary search tree. We also show that Dn/??Dn1 in probability. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 2003  相似文献   

4.
For a poset P=(X,≤P), the double bound graph (DB-graph) of P is the graph DB(P)=(X,EDB(P)), where xyEDB(P) if and only if xy and there exist n,mX such that nPx,yPm. We obtain that for a subposet Q of a poset P,Q is an (n, m)-subposet of P if and only if DB(Q) is an induced subgraph DB(P). Using this result, we show some characterizations of split double bound graphs, threshold double bound graphs and difference double bound graphs in terms of (n, m)-subposets and double canonical posets.  相似文献   

5.
Let R and B be disjoint point sets such that RB is in general position. We say that B encloses by R if there is a simple polygon P with vertex set B such that all the elements in R belong to the interior of P. In this paper we prove that if the vertices of the convex hull of RB belong to B, and |R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a previous paper in which it was proved that if |R| ≤ 56 |Conv(B)| then B encloses R. To obtain our result we prove the next result which is interesting on its own right: Let P be a convex polygon with n vertices p 1 , ... , p n and S a set of m points contained in the interior of P, mn − 1. Then there is a convex decomposition {P 1 , ... , P n } of P such that all points from S lie on the boundaries of P 1 , ... , P n , and each P i contains a whole edge of P on its boundary. F. Hurtado partially supported by projects MEC MTM2006-01267 and DURSI 2005SGR00692. C. Merino supported by CONACYT of Mexico, Proyecto 43098. J. Urrutia supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-45876, and MCYT BFM2003-04062. I. Ventura partially supported by Project MCYT BFM2003-04062.  相似文献   

6.
Let B m,n denote the set of all words obtained from the cyclic word of length n on an alphabet of m letters in by deleting on all possible ways and their natural order. In [Order, 16: 179–194, 1999] Burosch et al. computed the automorphism group of the poset B m,n . In this paper, we apply this result to obtain all of orbits of the natural action of Aut(B m,n ) on B m,n .  相似文献   

7.
Let m and n be nonnegative integers. Denote by P(m,n) the set of all triangle-free graphs G such that for any independent m-subset M and any n-subset N of V(G) with MN = Ø, there exists a unique vertex of G that is adjacent to each vertex in M and nonadjacent to any vertex in N. We prove that if m ? 2 and n ? 1, then P(m,n) = Ø whenever m ? n, and P(m,n) = {Km,n+1} whenever m > n. We also have P(1,1) = {C5} and P(1,n) = Ø for n ? 2. In the degenerate cases, the class P(0,n) is completely determined, whereas the class P(m,0), which is most interesting, being rich in graphs, is partially determined.  相似文献   

8.
Consider a tree Pn-g,g , n≥ 2, 1≤ g≤ n-1 on n vertices which is obtained from a path on [1,2,?…?,n-g] vertices by adding g pendant vertices to the pendant vertex n-g. We prove that over all trees on n?≥?5 vertices, the distance between center and characteristic set, centroid and characteristic set, and center and centroid is maximized by trees of the form Pn-g,g , 2?≤?g?≤?n-3. For n≥ 5, we also supply the precise location of the characteristic set of the tree Pn-g,g , 2?≤?g?≤?n-3.  相似文献   

9.
Let n ≥ 1 be an integer and let G be a graph. A set D of vertices in G is defined to be an n-dominating set of G if every vertex of G is within distance n from some vertex of D. The minimum cardinality among all n-dominating sets of G is called the n-domination number of G and is denoted by γn(G). A set / of vertices in G is n-irredundant if for every vertex x ∈ / there exists a vertex y that is within distance n from x but at distance greater than n from every vertex of / - {x}. The n-irredundance number of G, denoted by irn(G), is the minimum cardinality taken over all maximal n-irredundant sets of vertices of G. We show that inf{irn(G)/γn(G) | G is an arbitrary finite undirected graph with neither loops nor multiple edges} = 1/2 with the infimum not being attained. Subsequently, we show that 2/3 is a lower bound on all quotients irn(T)/γn(T) in which T is a tree. Furthermore, we show that, for n ≥ 2, this bound is sharp. These results extend those of R. B. Allan and R.C. Laskar [“On Domination and Some Related Concepts in Graph Theory,” Utilitas Mathematica, Vol. 21 (1978), pp. 43–56], B. Bollobás and E. J. Cockayne [“Graph-Theoretic Parameters Concerning Domination, Independence and Irredundance,” Journal of Graph Theory, Vol. 3 (1979), pp. 241–249], and P. Damaschke [Irredundance Number versus Domination Number, Discrete Mathematics, Vol. 89 (1991), pp. 101–104].  相似文献   

10.
We consider homeomorphisms ƒ of a punctured 2-disk D 2 \ P, where P is a finite set of interior points of D 2, which leave the boundary points fixed. Any such homeomorphism induces an automorphism ƒ * of the fundamental group of D 2 \ P. Moreover, to each homeomorphism ƒ, a matrix B ƒ (t) from GL(n, ℤ[t, t −1]) can be assigned by using the well-known Burau representation. The purpose of this paper is to find a nontrivial lower bound for the topological entropy of ƒ. First, we consider the lower bound for the entropy found by R. Bowen by using the growth rate of the induced automorphism ƒ *. Then we analyze the argument of B. Kolev, who obtained a lower bound for the topological entropy by using the spectral radius of the matrix B ƒ (t), where t ∈ ℂ, and slightly improve his result. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 5, pp. 47–55, 2005.  相似文献   

11.
Abraham  Uri  Bonnet  Robert  Kubiś  Wiesław  Rubin  Matatyahu 《Order》2003,20(3):265-290
Let (P,≤) be a partially ordered set. The poset Boolean algebra of P, denoted F(P), is defined as follows: The set of generators of F(P) is {x p  : pP}, and the set of relations is {x p x q =x p  : pq}. We say that a Boolean algebra B is well-generated, if B has a sublattice G such that G generates B and (G,≤ B |G) is well-founded. A well-generated algebra is superatomic. THEOREM 1. Let (P,≤) be a partially ordered set. The following are equivalent. (i) P does not contain an infinite set of pairwise incomparable elements, and P does not contain a subset isomorphic to the chain of rational numbers, (ii) F(P) is superatomic, (iii) F(P) is well-generated. The equivalence (i) ⇔ (ii) is due to M. Pouzet. A partially ordered set W is well-ordered, if W does not contain a strictly decreasing infinite sequence, and W does not contain an infinite set of pairwise incomparable elements. THEOREM 2. Let F(P) be a superatomic poset algebra. Then there are a well-ordered set W and a subalgebra B of F(W), such that F(P) is a homomorphic image of B. This is similar but weaker than the fact that every interval algebra of a scattered chain is embeddable in an ordinal algebra. Remember that an interval algebra is a special case of a poset algebra. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
An antimagic labeling of a graph with m edges and n vertices is a bijection from the set of edges to the integers 1,…,m such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it has an antimagic labeling. In [ 10 ], Ringel conjectured that every simple connected graph, other than K2, is antimagic. We prove several special cases and variants of this conjecture. Our main tool is the Combinatorial NullStellenSatz (cf. [ 1 ]). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
Let P be a finite poset and let L={x 1<...n} be a linear extension of P. A bump in L is an ordered pair (x i , x i+1) where x ii+1 in P. The bump number of P is the least integer b(P), such that there exists a linear extension of P with b(P) bumps. We call L optimal if the number of bumps of L is b(P). We call L greedy if x i j for every j>i, whenever (x i, x i+1) is a bump. A poset P is called greedy if every greedy linear extension of P is optimal. Our main result is that in a greedy poset every optimal linear extension is greedy. As a consequence, we prove that every greedy poset of bump number k is the linear sum of k+1 greedy posets, each of bump number zero.This research (Math/1406/31) was supported by the Research Center, College of Science, King Saud University, Riyadh, Saudi Arabia.  相似文献   

14.
A polytope P with 2n vertices is called equipartite if for any partition of its vertex set into two equal-size sets V 1 and V 2, there is an isometry of the polytope P that maps V 1 onto V 2. We prove that an equipartite polytope in ℝ d can have at most 2d+2 vertices. We show that this bound is sharp and identify all known equipartite polytopes in ℝ d . We conjecture that the list is complete.  相似文献   

15.
In the upper bound graph of a poset P, the vertex set is V(P) and xy is an edge if there exists an mV(P) with x,yPm. We show some characterizations on split upper bound graphs, threshold upper bound graphs and difference upper bound graphs in terms of m-subposets and canonical posets.  相似文献   

16.
We study random subgraphs of an arbitrary finite connected transitive graph ?? obtained by independently deleting edges with probability 1 ? p. Let V be the number of vertices in ??, and let Ω be their degree. We define the critical threshold pc = pc (??, λ) to be the value of p for which the expected cluster size of a fixed vertex attains the value λV1/3, where λ is fixed and positive. We show that, for any such model, there is a phase transition at pc analogous to the phase transition for the random graph, provided that a quantity called the triangle diagram is sufficiently small at the threshold pc. In particular, we show that the largest cluster inside a scaling window of size |p ? pc| = Θ(Ω?1V?1/3) is of size Θ(V2/3), while, below this scaling window, it is much smaller, of order O(??2 log(V?3)), with ? = Ω(pc ? p). We also obtain an upper bound O(Ω(p ? pc)V) for the expected size of the largest cluster above the window. In addition, we define and analyze the percolation probability above the window and show that it is of order Θ(Ω(p ? pc)). Among the models for which the triangle diagram is small enough to allow us to draw these conclusions are the random graph, the n‐cube and certain Hamming cubes, as well as the spread‐out n‐dimensional torus for n > 6. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

17.
The book with n pages Bn is the graph consisting of n triangles sharing an edge. The book Ramsey number r(Bm,Bn) is the smallest integer r such that either Bm ? G or Bn ? G for every graph G of order r. We prove that there exists a positive constant c such that r(Bm,Bn) = 2n + 3 for all n ≥ cm. Our proof is based mainly on counting; we also use a result of Andrásfai, Erd?s, and Sós stating that triangle‐free graphs of order n and minimum degree greater than 2n/5 are bipartite. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

18.
A uniform attachment graph (with parameter k), denoted Gn,k in the paper, is a random graph on the vertex set [n], where each vertex v makes k selections from [v ? 1] uniformly and independently, and these selections determine the edge set. We study several aspects of this graph. Our motivation comes from two similarly constructed, well‐studied random graphs: k‐out graphs and preferential attachment graphs. In this paper, we find the asymptotic distribution of its minimum degree and connectivity, and study the expansion properties of Gn,k to show that the conductance of Gn,k is of order . We also study the bootstrap percolation on Gn,k, where r infected neighbors infect a vertex, and show that if the probability of initial infection of a vertex is negligible compared to then with high probability (whp) the disease will not spread to the whole vertex set, and if this probability exceeds by a sub‐logarithmical factor then the disease whp will spread to the whole vertex set.  相似文献   

19.
A maximal antichain A of poset P splits if and only if there is a set BA such that for each pP either bp for some bB or pc for some cA\B. The poset P is cut-free if and only if there are no x < y < z in P such that [x,z]P = [x,y]P ∪ [y,z]P . By [1] every maximal antichain in a finite cut-free poset splits. Although this statement for infinite posets fails (see [2])) we prove here that if a maximal antichain in a cut-free poset “resembles” to a finite set then it splits. We also show that a version of this theorem is just equivalent to Axiom of Choice. We also investigate possible strengthening of the statements that “A does not split” and we could find a maximal strengthening. * This work was supported, in part, by Hungarian NSF, under contract Nos. T37846, T34702, T37758, AT 048 826, NK 62321. The second author was also supported by Bolyai Grant.  相似文献   

20.
We study the distribution Q on the set Bn of binary search trees over a linearly ordered set of n records under the standard random permutation model. This distribution also arises as the stationary distribution for the move-to-root (MTR) Markov chain taking values in Bn when successive requests are independent and identically distributed with each record equally likely. We identify the minimum and maximum values of the functional Q and the trees achieving those values and argue that Q is a crude measure of the “shape” of the tree. We study the distribution of Q(T) for two choices of distribution for random trees T; uniform over Bn and Q. In the latter case, we obtain a limiting normal distribution for −ln Q(T). © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号