首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 8 毫秒
1.
Blends of chitosan and poly(vinyl pyrrolidone) (PVP) have a high potential for use in various biomedical applications and in advanced drug‐delivery systems. Recently, the physical and chemical properties of these blends have been extensively characterized. However, the molecular interaction between these two polymers is not fully understood. In this study, the intermolecular interaction between chitosan and PVP was experimentally investigated using 13C cross‐polarization magic angle‐spinning nuclear magnetic resonance (13C CP/MAS NMR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). According to these experimental results, the interaction between the polymers takes place through the carbonyl group of PVP and either the OH? C6, OH? C3, or NH? C2 of chitosan. In an attempt to identify the interacting groups of these polymers, molecular modeling simulation was performed. Molecular simulation was able to clarify that the hydrogen atom of OH? C6 of chitosan was the most favorable site to form hydrogen bonding with the oxygen atom of C?O of PVP, followed by that of OH? C3, whereas that of NH? C2 was the weakest proton donor group. The nitrogen atom of PVP was not involved in the intermolecular interaction between these polymers. Furthermore, the interactions between these polymers are higher when PVP concentrations are lower, and interactions decrease with increasing amounts of PVP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1258–1264, 2008  相似文献   

2.
Polymer complexation between poly(styrene-co-maleic acid), (SMA28) and (SMA50) containing 28 and 50 mol% of maleic acid and poly(vinyl pyrrolidone) (PVP), has been investigated by differential scanning calorimeter (DSC), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). All results showed that the ideal complex composition of SMA28/PVP and SMA50/PVP leads, respectively, to 2:1 and 1:1 mole ratio of interacting components.For the investigated systems, the Tg versus composition curve does not follow any of the usual proposed models for polymer blends. Withal, a new model proposed by Cowie et al. is used to fit the Tg data and it is found to reproduce the experimental results more closely. According to n and q obtained values, it seems reasonable to conclude that the inter-associated hydrogen bonds dominate in SMA28/PVP (2:1) complexes. This effect is corroborated by the FTIR study as evidenced by the high displacement of the specific bands and ionic interactions have been clearly identified. Finally, a thermogravimetric study shows that ionic interactions increase the thermal stability of these complexes.  相似文献   

3.
A kinetic study was carried out on the acetalization reaction of 1,3-butanediol, as a model compound for poly(vinyl alcohol) (PVA), in water, under acidic conditions. Since these equilibrium constants of ketalization reaction of 1,3-butanediol and ethylene glycol are so small, the kinetic parameters were estimated from the hydrolysis reactions of the corresponding ketals. It was made clear that these reactions proceed in the reversible bimolecular reaction, and the heat of reaction and activation energy are nearly equal to that of PVA. The rate constants of hydrolysis reaction (k′s) of model compounds were calculated on the basis of value of acetone ketal, Hammett-Taft's equation log k′s/k′so – 0.54(n – 6) = ρ*σ* was established, and the value of ρ* was obtained (3.60), which coincided with the value of PVA. Therefore, it was made clear that the hydrolysis reactions of acetals and ketals are electrophilic reaction (SE II reaction) and the step of rate determination is the formation of hemiacetal and hemiketal. The rate constants of hydrolysis reaction of 1,3-butanediol acetals and ketals were approximately 10–20 larger, and those of ethylene glycol were approximetly 50–80 larger except for ketals, and those of ethanol were roughly 2000–10,000 larger compared with that of high-molecular weight compound (PVA). It can be well explained that these differences in the rate constant depend on their entropy and the mobility of molecules. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1719–1931, 1997  相似文献   

4.
The aim of this paper is to report the effect of the addition of cellulose nanocrystals(CNCs) on the mechanical, thermal and barrier properties of poly(vinyl alcohol)/chitosan(PVA/Cs) bio-nanocomposites films prepared through the solvent casting process. The characterizations of PVA/Cs/CNCs films were carried out in terms of X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetric analysis(TGA and DTG), oxygen transmission rate(OTR), and tensile tests. TEM and SEM results showed that at low loading levels, CNCs were dispersed homogenously in the PVA/Cs matrix. The tensile strength and modulus in films increased from 55.1 MPa to 98.4 MPa and from 395 MPa to 690 MPa respectively, when CNCs content went from 0 wt% to 1.0 wt%. The thermal stability and oxygen barrier properties of PVA/Cs matrix were best enhanced at 1.0 wt% of CNCs loading. The enhanced properties attained by incorporating CNCs can be beneficial in various applications.  相似文献   

5.
Molecular dynamics were performed for the simulation of the uniaxial deformation of poly(vinyl phenol) under periodic boundary conditions with the Parrinello–Rahman scheme followed by relaxation under NVT conditions (constant number of atoms, volume, and temperature). Changes in the orientation of the main chain, benzene segments, and hydrogen bonds were analyzed with the second‐order Legendre polynomial, 〈P2(cos θ)〉. Conformational changes were also followed. During deformation, backbone and phenyl rings both initially orient parallel to the draw direction. After relaxation, the chain is oriented parallel to the deformation direction, and side groups orient approximately perpendicular to this direction, in agreement with experimental data reported in the literature. Orientation values are higher than experimental values, as expected from the limited relaxation time range attainable in the simulations. Deformation proceeds by changes from gauche conformers to nontrans, nongauche, and trans conformers, whereas relaxation mainly allows high‐energy nontrans, nongauche conformers to convert into lower energy trans conformers. Values of the α angle for ring and bonded O? H segments agree with those in the literature. Differences observed for free hydroxyl moieties are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1601–1625, 2002  相似文献   

6.
The viscoelastic behavior and molecular motion of highly syndiotactic poly(vinyl alcohol) (S‐PVA) fibers with a dyad syndiotacticity (r) of 69% were studied by dynamic mechanical thermal analysis and wide‐angle X‐ray diffraction and compared with those of atactic poly(vinyl alcohol) (A‐PVA) fibers with r = 54%. The βc dispersion, based on the molecular motion of the chain molecules in the crystalline regions, was observed for A‐PVA around 120–140 °C, and the only primary (αc) dispersion was observed for S‐PVA around 180 °C. The thermal expansion coefficients for the a and c axes of the A‐PVA crystal changed discontinuously around 120 °C, which corresponded to the βc dispersion. For S‐PVA, the coefficient for the (002) plane changed discontinuously around 100 °C, similarly to A‐PVA, but that for the (100) plane remained unchanged between 20 and 220 °C. These results showed that the intermolecular hydrogen bonding of S‐PVA was stronger in the direction of the a axis than in the other directions, suppressing the βc dispersion. The storage modulus and thermal expansion coefficient of the (020) plane (molecular axis) of S‐PVA decreased markedly around 180 °C, and this indicated that the αc dispersion was due to the torsional motion of the molecular chains in the crystalline regions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 800–808, 2004  相似文献   

7.
8.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

9.
Different gel microstructures are induced at variable poly(vinyl alcohol) (PVA) and Congo red concentrations, as revealed by ultrarapid freezing and a replica technique for transmission electron microscopy. The polymer microstructures observed include random coils, rigid polymer rods, and long fibers. The development of the different polymer conformations is proposed to be dependent on the degree of intramolecular and intermolecular crosslinking and on the electrostatic interactions of the Congo red ions. The rigid‐rod conformation appears to be the most energetically stable form; it is disrupted by electrostatic effects around the polymer overlap concentration (C*PVA). We propose that the gel microstructure influences the physical properties of the gel. Gels possessing the rigid‐rod microstructure have increased Young's storage modulus values. Two possible mechanisms of gelation are suggested. The first describes a one‐stage reaction when the polymer concentration approximates C*PVA, where polymers in an extended random‐coil conformation undergo intermolecular crosslinking without any microstructural changes. The second describes a two‐stage reaction when the polymer concentration is less than or greater than C*, where a disorder–order transition results in the formation of rigid polymer rods and fibers followed by the formation of a macromolecular network. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1471–1483, 2001  相似文献   

10.
The effect of the dissolved state of poly(vinyl alcohol) (PVA) molecules in water on the color development due to PVA–iodine complexes was investigated at each given PVA and iodine concentration using two kinds of syndiotactic-rich PVA (S-PVA) which are unstable in water because of the formation of intermolecular hydrogen bonds and form the complex easily. In the reaction mixtures prepared by mixing PVA solutions and an iodine solution, the color development was constant and independent of standing time of the PVA solution before the addition of iodine up to a certain time, after which it decreased with the standing time. The color development obtained with use of the PVA solution allowed to stand for a fixed time was higher for S-PVA with a lower s-(diad)%. In the case of the reaction mixture prepared by dissolving PVA in an iodine solution, the color development was higher for S-PVA with a higher s-(diad)%. The initial ratio of the I5/I3 and the rate of decrease in the ratio of I5/I3 were larger than those in the preceding case. The color development decreased for the PVA with an s-(diad) % of 58, whereas it increased for the PVA an s-(diad) % of 61.3 with increasing propanol content, an inhibitor of gelation. From these results, the aggregates of PVA molecules have been assumed to play an important role in forming the complexes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1701–1709, 1997  相似文献   

11.
The characteristic rheological responses of solutions of atactic poly(vinyl alcohol) (PVA) in dimethyl sulfoxide were investigated in terms of the concentration and molecular weight. The syndiotactic dyad content and weight‐average molecular weight of PVA were 52% and 85,000–186,000, respectively. On a modified Cole–Cole plot, the solutions did not give a single master curve with a slope of 2 but gave various curves with slopes of less than 2. Furthermore, the slope slightly decreased with increasing concentration. The deviation from the master curve indicated that the solutions were rheologically heterogeneous, despite optical transparency. Among the PVA solutions, the 14 wt % solutions exhibited very unusual rheological behavior. The loss tangent changed with the shear rate and produced three distinct regions, which indicated a shear‐induced phase transition. With respect to Winter's view on gelation, the 14 wt % solutions underwent a double sol–gel transition as the shear rate increased over the frequency range of 0.05–500 rad/s. However, the molecular weight did not have such noticeable effects on the rheological behavior over the concentration range of 10–14 wt %. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1451–1456, 2004  相似文献   

12.
Poly(vinyl alcohol)‐graft‐poly(1,4‐dioxan‐2‐one) (PVA‐g‐PPDO) with designed molecular structure was synthesized by a solid‐state polymerization. The solid‐state copolymerization was preceded by a graft copolymerization of PDO initiated with PVA as a multifunctional initiator, and Sn (Oct)2 as a coininitiator/catalyst in a homogeneous molten state. The polymerization temperature was then decreased and the copolymerization was carried out in a solid state. The products prepared by solid‐state polymerization were characterized by 1H NMR and DSC, and were compared with those synthesized in the homogeneous molten state. The degree of polymerization (Dp), degree of substitution (Ds), yield and the average molecular weight of the graft copolymer with different molecular structure were calculated from the 1H NMR spectra. The results show that the crystallization process during the solid‐state polymerization may suppress the undesirable inter‐ or intramolecular side reactions, then resulting in a controlled molecular structure of PVA‐g‐PPDO. The results of DSC measurement show that the molecular structures determine the thermal behavior of the PVA‐g‐PPDO. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3083–3091, 2006  相似文献   

13.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

14.
An amphiphilic block copolymer of poly(N‐vinyl pyrrolidone)‐b‐poly(ε‐caprolactone) (PVP‐b‐PCL) was synthesized by a combination of cobalt‐mediated radical polymerization (CMRP) and ring‐opening polymerization (ROP). The micellar characteristics of this copolymer were subsequently investigated. PVP (Mn = 11,400, Mw/Mn = 1.32) was synthesized at 20 °C via CMRP using a molar ratio of [VP]0/[V‐70]0/[Co]0 = 150/8/1. The PVP was then reacted with 2,2′‐azobis[2‐methyl‐N‐(2‐hydroxyethyl)propionamide] (VA‐086) to modify its cobalt complex chain end to a hydroxyl group. The cobalt (Co) content in the resulting PVP‐OH was 1.2 ppm, indicating that all of the covalent Co? C bonds were cleaved and reacted with VA‐086, and that the separated cobalt complexes were successfully removed. The ROP of CL was subsequently carried out using the produced PVP‐OH as a macroinitiator at 110 °C. The GPC trace of PVP‐b‐PCL was monomodal without any tailing caused by the residual PVP‐OH, indicating that the initiation efficiency was very high. The critical micelle concentration (CMC) of PVP‐b‐PCL (Mn = 18,000, Mw/Mn = 1.35) was 0.015 mg/mL. The PVP‐b‐PCL micelles were spherical in shape with an average diameter of 105 nm. The nanosized PVP‐b‐PCL micelles show promise as novel drug carriers in biomedical and pharmaceutical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3078–3085, 2009  相似文献   

15.
The crosslinking processes of aqueous poly(vinyl alcohol) (PVA) by γ‐ray irradiation were studied by viscometry, dynamic and static light scattering (DLS and SLS), as well as size exclusion chromatography (SEC). Increases in the intrinsic viscosity ([η]), molecular weight (Mw), hydrodynamic radius (Rh), and radius of gyration (Rg), and a decrease in second virial coefficient (A2) were observed after γ‐ray irradiation. However, both the values of [η] and A2 for irradiated PVA fell below the data of unirradiated PVA solutions, suggesting a conformational change of PVA chains after γ‐ray irradiation. This structural change of PVA as a result of γ‐ray irradiation was also indicated by the decreases in Rg/Rh from 1.5 to 1.39 by SLS and DLS, and in Mark–Houwink exponent αη from 0.54 to 0.26 by SEC‐Viscometry. The broadening of the Mw distribution (MWD) as indicated by the polydispersity index increased from 2.2 to 6.5 because of γ‐ray irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 214–221, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号