首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABCBA‐type pentablock copolymers of methyl methacrylate (MMA), styrene (S), and isobutylene (IB) were prepared by a three‐step synthesis, which included atom transfer radical polymerization (ATRP) and cationic polymerization: (1) poly(methyl methacrylate) (PMMA) with terminal chlorine atoms was prepared by ATRP initiated with an aromatic difunctional initiator bearing two trichloromethyl groups under CuCl/2,2′‐bipyridine catalysis; (2) PMMA with the same catalyst was used for ATRP of styrene, which produced a poly(S‐b‐MMA‐b‐S) triblock copolymer; and (3) IB was polymerized cationically in the presence of the aforementioned triblock copolymer and BCl3, and this produced a poly(IB‐b‐S‐b‐MMA‐b‐S‐b‐IB) pentablock copolymer. The reaction temperature, varied from ?78 to ?25 °C, significantly affected the IB content in the product; the highest was obtained at ?25 °C. The formation of a pentablock copolymer with a narrow molecular weight distribution provided direct evidence of the presence of active chlorine at the ends of the poly(S‐b‐MMA‐b‐S) triblock copolymer, capable of the initiation of the cationic polymerization of IB in the presence of BCl3. A differential scanning calorimetry trace of the pentablock copolymer (20.1 mol % IB) showed the glass‐transition temperatures of three segregated domains, that is, polyisobutylene (?87.4 °C), polystyrene (95.6 °C), and PMMA (103.7 °C) blocks. One glass‐transition temperature (104.5 °C) was observed for the aforementioned triblock copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6098–6108, 2004  相似文献   

2.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

3.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

4.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

5.
Azo-containing polytetrahydrofuran (PTHF) obtained by cationic polymerization was used as a macroinitiator in the reverse atom transfer radical polymerization (RATRP) of styrene and methyl acrylate in conjunction with CuCl2/2,2′-bipyridine as a catalyst. Diblock PTHF–polystyrene and PTHF–poly(methyl acrylate) were obtained after a two-step process. In the first step of the reaction, stable chlorine-end-capped PTHF was formed with the thermolysis of azo-linked PTHF at 65–70 °C in the presence of the catalyst. Heating the system at temperatures of 100–110 °C started the polymerization of the second monomer, which resulted in the formation of block copolymers. The decomposition behavior of the azo-linked PTHF and the structure of the block copolymers were determined by 1H NMR and gel permeation chromatography (GPC). Kinetic studies and GPC analyses further confirmed the controlled/living nature of the RATRP initiated by the polymeric radicals. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2199–2208, 2002  相似文献   

6.
A series of polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy) styrene)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPS‐g‐PMMA)) and polystyrene‐b‐(poly(2‐(2‐bromopropionyloxy)ethyl acrylate)‐g‐poly(methyl methacrylate)) (PS‐b‐(PBPEA‐g‐PMMA)) as new coil‐comb block copolymers (CCBCPs) were synthesized by atom transfer radical polymerization (ATRP). The linear diblock copolymer polystyrene‐b‐poly(4‐acetoxystyrene) and polystyrene‐b‐poly(2‐(trimethylsilyloxy)ethyl acrylate) PS‐b‐P(HEA‐TMS) were obtained by combining ATRP and activators regenerated by electron transfer (ARGET) ATRP. Secondary bromide‐initiating sites for ATRP were introduced by liberation of hydroxyl groups via deprotection and subsequent esterification reaction with 2‐bromopropionyl bromide. Grafting of PMMA onto either the PBPS block or the PBPEA block via ATRP yielded the desired PS‐b‐(PBPS‐g‐PMMA) or PS‐b‐(PBPEA‐g‐PMMA). 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography data indicated the target CCBCPs were successfully synthesized. Preliminary investigation on selected CCBCPs suggests that they can form ordered nanostructures via microphase separation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2971–2983  相似文献   

7.
Two sets of styrene‐based semifluorinated block copolymers, one with a perfluoroether pendant group and another with a perfluoroalkyl group, were synthesized by atom transfer radical polymerization. Microphase separation of the block copolymers was established by small‐angle X‐ray scattering and differential scanning calorimetry (DSC). DSC measurements also showed that the perfluoroether‐based polymer had a low glass‐transition temperature (?44 °C). Contact‐angle measurements indicated that the semifluorinated block copolymers had low surface energies (ca. 13 mJ/m2). These materials hold promise as low‐surface‐energy additives or surfactants for supercritical CO2 applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 853–861, 2004  相似文献   

8.
A dual initiator (4‐hydroxy‐butyl‐2‐bromoisobutyrate), that is, a molecule containing two functional groups capable of initiating two polymerizations occurring by different mechanisms, has been prepared. It has been used for the sequential two‐step synthesis of well‐defined block copolymers of polystyrene (PS) and poly(tetrahydrofuran) (PTHF) by atom transfer radical polymerization (ATRP) and cationic ring‐opening polymerization (CROP). This dual initiator contains a bromoisobutyrate group, which is an efficient initiator for the ATRP of styrene in combination with the Cu(0)/Cu(II)/N,N,N,N,N″‐pentamethyldiethylenetriamine catalyst system. In this way, PS with hydroxyl groups (PS‐OH) is formed. The in situ reaction of the hydroxyl groups originating from the dual initiator with trifluoromethane sulfonic anhydride gives a triflate ester initiating group for the CROP of tetrahydrofuran (THF), leading to PTHF with a tertiary bromide end group (PTHF‐Br). PS‐OH and PTHF‐Br homopolymers have been applied as macroinitiators for the CROP of THF and the ATRP of styrene, respectively. PS‐OH, used as a macroinitiator, results in a mixture of the block copolymer and remaining macroinitiator. With PTHF‐Br as a macroinitiator for the ATRP of styrene, well‐defined PTHF‐b‐PS block copolymers can be prepared. The efficiency of PS‐OH or PTHF‐Br as a macroinitiator has been investigated with matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy, gel permeation chromatography, and NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3206–3217, 2003  相似文献   

9.
This study reports an application of trichloroethanol (TCE) as a bifunctional initiator for the synthesis of block copolymers (BCPs) by organocatalyzed ring‐opening polymerization (OROP) and atom transfer radical polymerization (ATRP). TCE was employed to synthesize a low dispersity poly (valerolactone) macroinitiator, which was subsequently used for the ATRP of tert‐butyl methacrylate. While it is known that TCE can serve as an initiator in ATRP, the ability to induce polymerization under OROP is reported for the first time. The formation of well‐defined BCPs was confirmed by gel permeation chromatography and 1H NMR. Computational studies were performed to obtain a molecular‐level understanding of the ring‐opening polymerization mechanism involving TCE as initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 563–569  相似文献   

10.
The synthesis of block copolymers consisting of a polyethylene segment and either a poly(meth)acrylate or polystyrene segment was accomplished through the combination of postmetallocene-mediated ethylene polymerization and subsequent atom transfer radical polymerization. A vinyl-terminated polyethylene (number-average molecular weight = 1800, weight-average molecular weight/number-average molecular weight =1.70) was synthesized by the polymerization of ethylene with a phenoxyimine zirconium complex as a catalyst activated with methylalumoxane (MAO). This polyethylene was efficiently converted into an atom transfer radical polymerization macroinitiator by the addition of α-bromoisobutyric acid to the vinyl chain end, and the polyethylene macroinitiator was used for the atom transfer radical polymerization of n-butyl acrylate, methyl methacrylate, or styrene; this resulted in defined polyethylene-b-poly(n-butyl acrylate), polyethylene-b-poly(methyl methacrylate), and polyethylene-b-polystyrene block copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 496–504, 2004  相似文献   

11.
The synthesis of ABA‐type block copolymers, involving liquid‐crystalline 6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate (LC6) and styrene (St) monomer with copper‐based atom transfer radical polymerization (ATRP) and photoinduced radical polymerization (PIRP), was studied. First, photoactive α‐methylol benzoin methyl ether was esterified with 2‐bromopropionyl bromide, and it was subsequently used for ATRP of LC6 in diphenylether in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst. The obtained photoactive functional liquid‐crystalline polymer, poly[6‐(4‐cyanobiphenyl‐4′‐oxy)hexyl acrylate] (PLC6), was used as an initiator in PIRP of St. Similarly, photoactive polystyrenes were also synthesized and employed for the block copolymerization of LC6 in the second stage. The spectral, thermal, and optical measurements confirmed a full combination of ATRP and PIRP, which resulted in the formation of ABA‐type block copolymers with very narrow polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1892–1903, 2003  相似文献   

12.
The miniemulsion reverse atom transfer radical polymerization of butyl methacrylate was carried out with cetyltrimethylammonium bromide (CTAB) as the sole surfactant. The polymerizations were initiated with 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane] dihydrochloride and mediated with copper(II) bromide/tris[2‐di(2‐ethylhexyl acrylate)aminoethyl]amine. The living character was demonstrated by the linear increase in the number‐average molecular weight with conversion and the decreasing polydispersity index with conversion. The polymerizations were conducted at 90 °C with 1 wt % CTAB with respect to the monomer and produced a coagulum‐free latex with a mean particle diameter of 155 nm. The resulting latexes exhibited good shelf‐life stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1628–1634, 2006  相似文献   

13.
The synthesis of poly(methyl acrylate)-block-poly(gamma-benzyl-L-glutamate) (PMA-b-PBLG) diblock copolymers, using atom-transfer radical polymerization (ATRP) of methyl acrylate and living polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (Glu-NCA) is described. Amido-amidate nickelacycle end groups were incorporated onto amino-terminated poly(methyl acrylates), and the resulting complexes were successfully used as macroinitiators for the growth of polypeptide segments. This method allows the controlled preparation of polypeptide-block-poly(methyl acrylate) diblock architectures with control over polypeptide chain length and without the formation of homopolypeptide contaminants.  相似文献   

14.
Well‐defined amphiphilic and thermoresponsive ABC miktoarm star terpolymer consisting of poly(ethylene glycol), poly(tert‐butyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PtBMA)‐b‐PNIPAM, was synthesized via a combination of consecutive click reactions and atom transfer radical polymerization (ATRP). Click reaction of monoalkynyl‐terminated PEG with a trifunctional core molecule bis(2‐azidoethyl)amine, (N3)2? NH, afforded difunctional PEG possessing an azido and a secondary amine moiety at the chain end, PEG‐NH? N3. Next, the amidation of PEG‐NH? N3 with 2‐chloropropionyl chloride led to PEG‐based ATRP macroinitiator, PEG(? N3)? Cl. The subsequent ATRP of N‐isopropylacrylamide (NIPAM) using PEG(? N3)? Cl as the macroinitiator led to PEG(? N3)‐b‐PNIPAM bearing an azido moiety at the diblock junction point. Finally, well‐defined ABC miktoarm star terpolymer, PEG(‐b‐PtBMA)‐b‐PNIPAM, was prepared via the click reaction of PEG(? N3)‐b‐PNIPAM with monoalkynyl‐terminated PtBMA. In aqueous solution, the obtained ABC miktoarm star terpolymer self‐assembles into micelles consisting of PtBMA cores and hybrid PEG/PNIPAM coronas, which are characterized by dynamic and static laser light scattering, and transmission electron microscopy. On heating above the phase transition temperature of PNIPAM in the hybrid corona, micelles initially formed at lower temperatures undergo further structural rearrangement and fuse into much larger aggregates solely stabilized by PEG coronas. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4001–4013, 2009  相似文献   

15.
Atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) were combined to synthesize poly(?‐caprolactone‐co‐octadecyl methacrylate‐co‐dimethylaminoethyl methacrylate) copolymers possessing a triblock or random block structure. Various synthetic pathways (sequential or simultaneous approaches) were investigated for the synthesis of both copolymers. For the preparation of these copolymers, an initiator with dual functionality for ATRP/anionic ring‐opening polymerization, 2‐hydroxyethyl 2‐bromoisobutyrate, was used. Copolymers were prepared with good structural control and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.2), but one limitation was identified: the dimethylaminoethyl methacrylate (DMAEMA) block had to be synthesized after the ?‐caprolactone block. ROP could not proceed in the presence of DMAEMA because the complexation of the amine groups in poly(dimethylaminoethyl methacrylate) deactivated tin(II) hexanoate, which was used as a catalyst for ROP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1498–1510, 2005  相似文献   

16.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

17.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

18.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

19.
Copolymers of methyl methacrylate (MMA) and n‐butyl acrylate (n‐BA) were synthesized under atom transfer radical polymerization (ATRP) conditions. The molar infeed ratio was varied to obtain copolymers with different compositions. Methyl 2‐bromo propionate was used as the initiator with CuBr/Cu(0)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst at 60 °C. Molecular weight distribution was determined by gel permeation chromatography (GPC). Copolymer compositions (FM) were calculated from 1H NMR spectra. Reactivity ratios calculated with the Mao–Huglin terminal model at a high conversion were found to be rM = 2.17 and rB = 0.47. The polymerization mechanism was studied with the α‐methyl region of MMA. The backbone methylene and carbonyl carbons of both MMA and n‐BA units were found to be compositionally as well as configurationally sensitive. Complete spectral assignments were performed with the help of heteronuclear single quantum coherence (HSQC) spectroscopy along with total correlated spectroscopy (TOCSY). Further, the assignments of the carbonyl region were made with the help of heteronuclear multiple quantum coherence (HMBC) spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1100–1118, 2005  相似文献   

20.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号