首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of clay on polymorphism of polypropylene (PP) in PP/clay nanocomposites (PPCNs) under various thermomechanical conditions were studied. In extruded PP and PPCN pellet samples, only α-phase crystallites existed, as they were prepared by rapidly cooling the melt extrudates to room temperature. Under compression, β-phase crystallites can develop in neat PP under various thermal conditions, of which isothermal crystallizing at 120 °C gave the highest content of β-phase crystallites. In contrast, no β-phase crystallite was detected in the PPCN samples prepared under the same conditions. This indicated that clay significantly inhibits the formation of β-phase crystallites. The likely reason is that the presence of clay in PPCNs greatly sped up the crystallization process of the α phase, whereas it had an insignificant effect on the crystallization rates of the β phase. The results also showed that clay may slightly promote the formation of γ-phase PP crystallites in PPCNs. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1810–1816, 2004  相似文献   

2.
The multiwalled carbon nanotubes/polypropylene nanocomposites (PP/CNTs) were prepared by melt mixing using maleic anhydride grafted polypropylene (mPP) as the compatibilizer. The effect of mPP on dispersion of CNTs was then studied using the tool of rheology, aiming at relating the viscoelastic behaviors to the mesoscopic structure of CNTs. To further explore the kinetics of hybrid formation, a multilayered sample with alternatively superposed neat mPP and binary PP/CNTs microcomposites (without addition of mPP) sheets was prepared and experienced dynamic annealing in the small amplitude oscillatory shear flow. The results show that melt blending CNTs with PP can only yield the composites with microscale dispersion of CNTs, while adding mPP promotes nanoscale dispersion of CNTs as smaller bundles or even as individual nanotubes, reducing percolation threshold as a result. However, the values of apparent diffusivities of the composites are in same order with that of self‐diffusion coefficients of the neat PP, indicating that the presence of detached CNTs nearly does not inhibit PP chain motion. Hence, the activation energy of hybrid formation is close to the self‐diffusion of PP. This also indicates that although addition of mPP can improve the compatibility between CNTs and PP thermodynamically, those dynamic factors, such as shear flow, however, may be the dominant role on hybrid formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 608–618, 2009  相似文献   

3.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

4.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

5.
6.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

7.
Highly exfoliated isotactic‐polypropylene/alkyl‐imidazolium modified montmorillonite (PP/IMMT) nanocomposites have been prepared via in situ intercalative polymerization. TEM and XRD results indicated that the obtained composites were highly exfoliated PP/IMMT nanocomposites and the average thickness of IMMT in PP matrix was less than 10 nm, and the distance between adjacent IMMT particles was in the range of 20–200 nm. The isothermal crystallization kinetics of highly exfoliated PP/IMMT nanocomposites were investigated by using differential scanning calorimeter(DSC) and polarized optical microscope (POM). The crystallization half‐time t1/2, crystallization peak time tmax, and the Avrami crystallization rate constant Kn showed that the nanosilicate layers accelerate the overall crystallization rate greatly due to the nucleation effect, and the crystallization rate was increased with the increase in MMT content. Meanwhile, the crystallinity of PP in nanocomposites decreased with the increase in clay content which indicated the PP chains were confined by the nanosilicate layers during the crystallization process. Although the well‐dispersed silicate layers did not have much influence on spherulites growth rate, the nucleation rate and the nuclei density increased significantly. Accordingly, the spherulite size decreased with the increase in MMT content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2215–2225, 2009  相似文献   

8.
Polypropylene (PP)/octavinyl polyhedral oligomeric silsesquioxane (POSS) composites were prepared by two different processing methods: reactive blending and physical blending, and the crystallization behavior of PP and PP/POSS composites was studied by means of differential scanning calorimetry and polarized optical microscope. The results showed that the crystallization of PP in PP/POSS composites was strongly influenced by the different processing methods. POSS particles can act as effective nucleating agent, accelerating the crystallization of PP. The crystallization rate increased more dramatically for the reactive blending composite due to the stronger nucleating effect of PP grafted POSS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1762–1772, 2008  相似文献   

9.
Isotactic polypropylene nanocomposites were obtained by the melt blending of polypropylene‐graft‐maleic anhydride and organophilic layered silicate (OLS) consisting of synthetic fluorohectorite modified by cation exchange with protonated octadecylamine. The composition of the inorganic clay was varied between 2.5 and 10 wt %, and films of the composites were obtained via hot‐press molding. X‐ray analysis showed that nanocomposites in which silicate layers were either delaminated or ordered as in an intercalated structure were obtained. The elastic modulus of the samples was higher than that of the pure polymer over a wide temperature range and increased with increasing inorganic content. The transport properties, sorption and diffusion, were measured for two organic vapors, dichloromethane and n‐pentane. For both vapors, the sorption was not very different from that of the pure polymer, whereas the zero‐concentration diffusion parameter strongly decreased with increasing OLS content. Therefore, the permeability, that is, the product of sorption and diffusion, decreased for both vapors as a result of the decreased value of the diffusion parameter. The decrease was higher for the less interacting n‐pentane. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1798–1805, 2003  相似文献   

10.
The effect of CO2 on the nonisothermal crystallization of isotactic polypropylene (iPP) was studied with high‐pressure differential scanning calorimetry at cooling rates of 0.2–5 °C/min. CO2 significantly delayed the melt crystallization of iPP, and both the crystallization temperature and the heat of crystallization decreased with increasing CO2 pressure. The crystallization rate of iPP, as characterized by the half‐time, was also prolonged by the presence of CO2. With a modified Ozawa model developed by Seo, the Avrami crystallization exponent n of iPP was calculated. This value was depressed by the addition of CO2 and was strongly dependent on the CO2 pressure at low cooling rates. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1518–1525, 2003  相似文献   

11.
For the improved dispersion of montmorillonite (MMT) in a polypropylene (PP) matrix, PP/MMT nanocomposites prepared via direct melt intercalation were further subjected to oscillating stress achieved by dynamic packing injection molding. The shear‐induced morphological changes were investigated with an Instron machine, wide‐angle X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The original nanocomposites possessed a partly intercalated and partly exfoliated morphology. A transformation of the intercalated structure into an exfoliated structure occurred after shearing, and a more homogeneous dispersion of MMT in the PP matrix was obtained. However, the increase of the exfoliated structure was accompanied by the scarifying of the orientation of MMT layers along the shear direction. Some bended or curved MMT layers were found for the first time by TEM after shearing. However, the orientation of PP chains in the PP/MMT nanocomposites became very difficult under an external shear force; this indicated that the molecular motion of PP chains intercalated between MMT layers was highly confined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1–10, 2003  相似文献   

12.
This study investigates the influence of nylon‐6 (PA‐6) and ethylene‐vinyl acetate copolymer (EVA) alloy/clay nanocomposites on the properties of the flame‐retardant (FR) poly(propylene). Cone calorimetry and scanning electron microscopy (SEM) techniques were used to investigate the effect of PA‐6 and EVA alloy nanocomposites on the fire properties and dispersion of intumescent flame‐retardants (IFRs). The experimental results show that PA‐6 and EVA alloy nanocomposites improve the fire and mechanical properties of the FR poly(propylene). It is also shown that the improvement of the properties mainly depends on the weight ratio of PA‐6 and EVA in the alloys. The probable mechanisms are discussed in this paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(propylene)/clay nanocomposites were prepared by melt intercalation, using pristine montmorillonite (MMT), hexadecyl trimethyl ammonium bromide (C16), poly(propylene) (PP) and maleic acid (MA) modified PP (MAPP), The nanocomposites structure is demonstrated using X‐ray diffraction (XRD) and high resolution electronic microscopy (HREM). Our purpose is to provide a general concept for manufacturing polymer nanocomposites by melt intercalation starting from the pristine MMT. We found different kneaders (twin‐screw extruder or twin‐roll mill) have influence on the morphology of the PP/clay nanocomposites. Thermogravimetric analysis (TGA) shows that the thermal stability of PP/clay nanocomposites has been improved compared with that of pure PP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The direct‐current and alternating‐current electrical behavior of nanocomposites, formed by isotactic polypropylene partially modified with maleic anhydride and filled with different amounts of modified synthetic clay, has been studied; moreover, the conduction mechanisms and the relaxation processes that take place in the materials have been investigated. The nanocomposites containing small clay contents exhibit direct‐current insulating properties comparable to or even higher than those observed in the polymeric matrix. However, as the synthetic clay content increases, the ionic contribution to conductivity becomes considerable. The nanocomposites also show a slightly higher permittivity and loss factor than the host material because of the appearance of a thermally activated relaxation process in the frequency range of 10?2 to 102 Hz at the investigated temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 705–713, 2007  相似文献   

15.
In this work, the synthesis of polypropylene (PP)/graphene nanosheet (GNS) nanocomposites by in situ polymerization using metallocene catalysts was studied. Initial reactions were performed using rac‐Et(Ind)2ZrCl2 and rac‐Me2Si(Ind)2ZrCl2 catalysts to select the best one to obtain good molecular weight, thermal properties, and tacticity. Subsequently, PP nanocomposites with different loadings of GNS were obtained. GNS from two different sources [Graphite Nacional (GN) and Graphite Aldrich (GA)] have been used, and the differences between the obtained nanocomposites were evaluated. The GNS and nanocomposites were studied by scanning electronic microcopy, transmission electronic microcopy, and X‐ray diffraction. They showed that the GN nanosheets had lower crystal size and diameter than the GA nanosheets and dispersed better in the PP matrix. Differential scanning calorimetry analyses of both types of nanocomposites showed an increase in the crystallization temperature with increasing graphite loading. The polymeric materials were also characterized by GPC, thermogravimetric analysis, and 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Polypropylene (PP)/Ti-MCM-41 nanocomposites were prepared by isospecific propylene polymerization with Ti-MCM-41/Al(i-C4H9)3 catalyst. The cross polarization/magic angle spinning (CP/MAS) 13C NMR spectrum of the composite was similar to that of the conventional isotactic PP, and the decrease in the pore volume of Ti-MCM-41 in the nanocomposites, as measured by N2 adsorption, was consistent with the value calculated from the weight loss in the thermogravimetric analysis (TGA) curve; both these facts attest to propylene polymerization within the mesopores of Ti-MCM-41. Alkali treatment followed by extraction with o-dichlorobenzene allows us to extract the confined PP out of the Ti-MCM-41 mesopores. Although the PP/Ti-MCM-41 nanocomposites do not exhibit a crystalline melting point, the same PP when extracted from the mesopores showed a clear melting point at 154.7 °C; this indicates that the crystallization of PP confined in mesopores is strongly hindered. For the PP polymerized within the confinement, the molecular weight (Mw) and molecular weight distribution (Mw/Mn) were 84,000 and 4.3, respectively; these values were considerably smaller than those of the PP polymerized concurrently outside the Ti-MCM-41 mesopores (Mw = 200,000–450,000, Mw/Mn = 40–75). Therefore, the confinement also has a marked effect on the molecular weight of the PP. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3324–3332, 2003  相似文献   

17.
Polycarbonate (PC)/acrylonitrile‐butadiene‐styrene (ABS) polymer alloy/montmorillonite (MMT) nanocomposites were prepared using a direct melt intercalation technique. The pyrolytic degradation and the thermo‐oxidative degradation of the polymer alloy and the nanocomposites were studied by thermogravimetric analysis (TGA). The kinetic evaluations were performed by the model‐free kinetic analysis and the multivariate non‐linear regression. Apparent kinetic parameters for the overall degradation were calculated. The results show that PC/ABS/MMT nanocomposites have high thermal stability and low flammability. Their pyrolytic degradation and the thermo‐oxidative degradation model are different. The pyrolytic degradation reaction of the polymer is a two‐step parallel reaction model: nth‐order reaction model, and ath‐degree autocatalytic reaction with an nth‐order reaction autocatalytic reaction, whereas the thermal oxidative degradation reaction of the polymer is a two‐step following reaction model: A → B → C of nth‐order reaction model, and autocatalytic reaction model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The study of new catalytic systems is critical in order to develop improved and cost effective polymerization processes. One of the methods to evaluate the performance of a catalytic system is by means of bench scale reactors. Despite its difference in size with large scale industrial plants, bench scale reactors have proved to be a valuable tool to understand the behavior of the catalytic system during the polymerization. In this work, a method to estimate the kinetic parameters of propylene polymerization over a conventional Ziegler Natta catalyst is evaluated. Thus, it was possible to set up a semi-empirical model to correlate the reaction yield with the polymerization time, the hydrogen content in the reactor and the reaction temperature. This model proves to be useful to evaluate the performance of a catalytic system within the range of normal operating conditions. A brief study on the particle size distribution of the products is also carried out.  相似文献   

19.
Polypropylene‐layered silicate nanocomposites consisting of three components—pure polypropylene, maleated polypropylene, and organically modified silicate—were prepared by the melt‐intercalation method to investigate melt‐extensional properties such as melt strength, neck‐in test, and orientation behavior. The nanocomposites showed an enhanced tensile modulus, enhanced storage modulus, much enhanced melt tension, and reduced neck‐in during the melt processing as compared with neat polymer. The uniaxial drawing induced the silicate surface to align parallel to the sheet surface. The c and a* axes of the polypropylene crystals were bimodally oriented to the flow direction, and the b axes were oriented to the thickness direction. The bimodal orientation of the polypropylene crystal was enhanced with the concentration of silicates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 158–167, 2005  相似文献   

20.
In this study, clay and/or graphite particles have been added in various quantities to polypropylene matrix by melt blending. The morphology and more particularly the dispersion of particles in these composites have been compared by transmission electron microscopy (TEM). Their thermal stability has also been studied by thermogravimetric analysis (TGA). The experimental results reveal that the addition of 5 wt % of graphite particles or clay improves the thermal stability in air of the matrix by about 50 and 90 °C, respectively. In a second step, these blends have been melt‐spun to produce multifilament yarns. The experiments have shown that the addition of graphite particles up to 5 wt % do not reduce the spinnability of the polypropylene, while the incorporation of more than 1 wt % of clay was causing difficulties for the spinning and more particularly for the drawing step. However, a slight improvement of the Young's modulus of the filaments reinforced with 1 wt % of Cloisite®15A is observed when the filaments are drawn up. The flammability of the different blends used as knitted fabrics has finally been evaluated with a mass loss calorimeter at 35 kW/m2. An atypical behavior has been highlighted for all blends and will be discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1185–1195, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号