首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ion exchange resin immobilized Co(II) catalyst with a small amount of soluble CuCl2/Me6TREN catalyst was successfully applied to atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in DMF. Using this catalyst, a high conversion of MMA (>90%) was achieved. And poly(methyl methacrylate) (PMMA) with predicted molecular weight and narrow molecular weight distribution (Mw/Mn = 1.09–1.42) was obtained. The immobilized catalyst can be easily separated from the polymerization system by simple centrifugation after polymerization, resulting in the concentration of transition metal residues in polymer product was as low as 10 ppm. Both main catalytic activity and good controllability over the polymerization were retained by the recycled catalyst without any regeneration process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1416–1426, 2008  相似文献   

2.
The atom transfer radical polymerization of styrene and methyl methacrylate with FeCl2/iminodiacetic acid as the catalyst system in bulk was successfully implemented at 70 and 110 °C, respectively. The polymerization was controlled: the molecular weight of the resultant polymer was close to the calculated value, and the molecular weight distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight ∼ 1.5). Block copolymers of polystyrene‐b‐poly(methyl methacrylate) and poly(methyl methacrylate)‐b‐poly(methyl acrylate) were successfully synthesized, confirming the living nature of the polymerization. A small amount of water added to the reaction system increased the reaction rate and did not affect the living nature of the polymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4308–4314, 2000  相似文献   

3.
4.
Nickel‐mediated atom transfer radical polymerization (ATRP) and iron‐mediated reverse ATRP were applied to the living radical graft polymerization of methyl methacrylate onto solid high‐density polyethylene (HDPE) films modified with 2,2,2‐tribromoethanol and benzophenone, respectively. The number‐average molecular weight (Mn) of the free poly(methyl methacrylate) (PMMA) produced simultaneously during grafting grew with the monomer conversion. The weight‐average molecular weight/number‐average molecular weight ratio (Mw/Mn) was small (<1.4), indicating a controlled polymerization. The grafting ratio showed a linear relation with Mn of the free PMMA for both reaction systems. With the same characteristics assumed for both free and graft PMMA, the grafting was controlled, and the increase in grafting ratio was ascribed to the growing chain length of the graft PMMA. In fact, Mn and Mw/Mn of the grafted PMMA chains cleaved from the polyethylene substrate were only slightly larger than those of the free PMMA chains, and this was confirmed in the system of nickel‐mediated ATRP. An appropriate period of UV preirradiation controlled the amount of initiation groups introduced to the HDPE film modified with benzophenone. The grafting ratio increased linearly with the preirradiation time. The graft polymerizations for both reaction systems proceeded in a controlled fashion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3350–3359, 2002  相似文献   

5.
Pyridine‐2‐carboximidates [methyl ( 1a ), ethyl ( 1b ), isopropyl ( 1c ), cyclopentyl ( 1d ), cyclohexyl ( 1e ), n‐octyl ( 1f ), and benzyl ( 1g )] were prepared from the reaction of 2‐cyanopyridine with the corresponding alcohols. Cyclopentyl‐substituted 1d was found to be a highly effective ligand for copper‐catalyzed atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). For example, the observed rate constant for a CuBr/ 1d catalytic system was found to be nearly twice as high as the cyclohexyl‐substituted CuBr/ 1e catalytic system [kobs = (1.19 vs 0.56) × 10?4 s?1). The effects of the solvents, temperature, catalyst/initiator, and solvent/monomer ratio on the ATRP of MMA were studied systematically for the CuBr/ 1d catalytic system. The optimum condition for the ATRP of MMA was found to be a 1:2:1:400 [CuBr]o/[ 1d ]o/[ethyl 2‐bromoisobutyrate]o/[MMA]o ratio at 60 °C in veratrole solution, which yielded well‐defined poly(MMA) with a narrow molecular weight distribution of 1.14. The catalytically active copper complex 2d was isolated from the reaction of CuBr with 1d . Narrow molecular weight distributions as low as 1.06 were achieved for the CuBr/ 1d catalytic system by employing 10% of the deactivator CuBr2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2747–2755, 2004  相似文献   

6.
微波辐射下甲基丙烯酸正丁酯原子转移自由基聚合   总被引:1,自引:0,他引:1  
原子转移自由基聚合(Atom transfer radical polymerization,ATRP)与其他活性聚合方法相比,具有适用单体广、反应条件温和。但其催化体系活性不高,聚合温度较高,数均分子量不高。  相似文献   

7.
The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2′-bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed. __________ Translated from Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(2) (in Chinese)  相似文献   

8.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   

9.
A reversible catalyst immobilization system via self‐assembly of hydrogen bonding between thymine anchored on silica gel support and 2,6‐diaminopyridine functionalized with a catalyst (copper bromide‐N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) complex) was developed for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). At elevated temperatures, the hydrogen bonding disassociated and released the catalyst as free small molecules for catalysis, which effectively mediated a living polymerization of MMA, producing PMMA with controlled molecular weight and narrow molecular weight distribution (<1.3). At room temperature, the catalyst assembled on the silica gel support by hydrogen bonding, and thus could be recovered and reused for a second run of ATRP. The recovered catalyst still mediated a living polymerization of MMA with reduced activity (54–64%), but had much improved control of the polymerization. The resulting PMMA had molecular weights very close to theoretical vales. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 22–30, 2004  相似文献   

10.
11.
The reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) was successfully carried out under pulsed microwave irradiation (PMI) at 69 °C with N,N‐dimethylformamide as a solvent and with azobisisobutyronitrile (AIBN)/CuBr2/tetramethylethylenediamine as an initiation system. PMI resulted in a significant increase in the polymerization rate of RATRP. A 10.5% conversion for a polymer with a number‐average molecular weight of 34,500 and a polydispersity index of 1.23 was obtained under PMI with a mean power of 4.5 W in only 52 min, but 103 min was needed under a conventional heating process (CH) to reach a 8.3% conversion under identical conditions. At different [MMA]0/[AIBN]0 molar ratios, the apparent rate constant of polymerization under PMI was 1.5–2.3 times larger than that under CH. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3823–3834, 2002  相似文献   

12.
13.
Controlled polymerizations of vinyl monomers such as methyl methacrylate and styrene are achieved using N‐chloro,N‐propyl‐p‐toluenesulfonamide (NCPT) together with a cuprous bromide/hexahexyl triethylenetetramine (CuBr/H‐TETA) complex. Although N‐halosulfonamides are known to decompose radically to give free chlorine, NCPT alone (without a cuprous complex) does not initiate any polymerization even in prolonged reaction times. Instead these add to the double bonds to give 2‐chloroethylsulfonamides. In the present polymerization system a good chlorine donator (NCPT) is combined with an organic soluble complex (CuBr/H‐TETA) to perform atom transfer radical polymerizations (ATRPs) in homogenous conditions. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln(M0/M) (where M0 and M are the monomer contents at the beginning and at any time, respectively) versus time plots indicate typical controlled polymerization characteristics. The use of freshly prepared NCPT is advisable due to its slow and spontaneous decomposition when standing at room temperatures. Because of their easy preparation, N‐chlorosulfonamides can be used and are preferred instead of special halogen compounds commonly used in copper mediated ATRP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2691–2695, 2001  相似文献   

14.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

15.
Ultrasonication was applied in combination with a hydrophobe for the copper‐mediated atom transfer radical polymerization of n‐butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between the molecular weights and the monomer conversion. The polydispersities of the polymers were small (weight‐average molecular weight/number‐average molecular weight < 1.5). The influence of several factors, including ultrasonication, the amount of the surfactant, and the nature of the initiator, on the polymerization kinetics, molecular weight, and particle size was studied. The polymerization rate and molecular weights were independent of the number of particles and only depended on the atom transfer equilibrium. The final particle size, however, was a function of all the parameters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4724–4734, 2000  相似文献   

16.
A non‐olefinic monomer, methyl 1‐bicyclobutanecarboxylate (MBC), was successfully polymerized by the controlled/“living” atom transfer radical polymerization (ATRP) technique, resulting in a well‐defined homopolymer, PMBC, with only cyclobutane ring units in the polymer chain. An AB block copolymer poly(methyl 1‐bicyclobutanecarboxylate)‐b‐polystyrene (PMBC‐b‐PS), having an all‐ring unit segment, was also synthesized with narrow polydispersity and designed number‐average molecular weight in addition to precise end groups. The 1H NMR spectra, glass‐transition temperature, and thermal stability of PMBC, PMBC‐b‐PS, and PS‐b‐PMBC were investigated. The experimental results showed that the cyclobutane rings in the two block polymers improved their thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1929–1936, 2002  相似文献   

17.
Polymerization of 2‐(diethylamino)ethyl methacrylate (DEAEMA) via homogeneous atom transfer radical polymerization under various reaction conditions is described. The effects of the initiators and solvents were examined. With 1,1,4,7,10,10‐hexamethyl triethylenetetramine/copper(I) chloride/p‐toluenesulfonyl chloride as the ligand/catalyst/initiator system in methanol, poly(DEAEMA) with a polydispersity index as low as 1.07 was synthesized. Kinetic studies demonstrated the polymerization was very well controlled and exhibited the living characteristic of the process. Well‐defined block copolymers of DEAEMA and tert‐butyl methacrylate (tBMA) were successfully synthesized. The copolymers could be synthesized with equally good results by starting with either p(DEAEMA) or p(tBMA) as the macroinitiators. However, only the macroinitiators terminated with chlorine should be used. The corresponding macroinitiators with bromine as a transferable group did not yield well‐defined copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2688–2695, 2003  相似文献   

18.
Atom transfer radical polymerization conditions with copper(I) bromide/2,2-bipyridine (Cu/2,2-bpy) as the catalyst system were employed for the homopolymerization and random copolymerization of 1-phenoxycarbonyl ethyl methacrylate (PCMA) with methyl methacrylate (MMA). Temperature studies indicated that the polymerizations occurred smoothly in bulk at 110 °C. Poly(PCMA)(polydispersity index=1.27) homopolymer was characterized and then used as macroinitiator for increasing its molecular weight. The homopolymerization of PCMA was also carried out under free radical conditions using 2,2-azobisisobutyronitrile as an initiator.The monomer and polymers were characterized by FT-IR and 1H and 13C-NMR techniques. The glass transition temperatures, the solubility parameters and average-molecular weights of the polymers were determined. Thermal stabilities of the polymers were given as compared with each other by using TGA curves. Thermal degradation products of poly(PCMA)s obtained by ATRP and free radical polymerization were compared with each other by using 1H-NMR technique.  相似文献   

19.
The atom transfer radical bulk polymerization of styrene with FeX2 (X = Br or Cl)/tris(3,6‐dioxaheptyl) amine as the catalyst system was successfully implemented at 110 °C. The number‐average molecular weight of the polymers with a narrow molecular weight distribution (weight‐average molecular weight/number‐average molecular weight = 1.2–1.5) increased linearly with the monomer conversion and matched the predicted molecular weight. The polymerization rate, initiation efficiency, and molecular weight distribution were influenced by the selection of the initiator and iron halide. The high functionality of the halide end group in the obtained polymers was confirmed by both 1H NMR and a chain‐extension reaction. Because of its water solubility, the iron complexes could be removed easily from the reaction mixture through the washing of the polymerization mixture with water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 483–489, 2006  相似文献   

20.
Zerovalent ytterbium (Yb) powder is firstly used as a catalyst in single electron transfer‐living radical polymerization of methyl methacrylate initiated by carbon tetrachloride in N, N‐dimethylformamide (DMF) and dimethyl sulfoxide, respectively. Polymerization proceeds in a “living”/controlled way as evidenced by kinetic studies and chain extension results, producing well‐defined polymers with controlled degree of polymerization and narrow molecular weight distribution. The apparent activation energy of polymerization in DMF is accounted to be 36.2 kJ/mol, and the energy of equilibrium state is calculated to be 13.9 kJ/mol. An increase in the concentration of Yb(0) yields a higher monomer conversion. It is observed that polymerization rate experiments a rapid increase in the presence of more polar solvent water, and increasing in the content of H2O results in an increase in the apparent rate constant of polymerization, and a decrease in the molecular weight distribution. The reaction rate and molecular weight increase along with the decrease of DMF content. The effect of Yb(0) powder content, different ligands and concentration of initiator on the polymerization is also investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号