首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
La8Cu7O19 was synthesized by solid state reaction of the oxides La2O3 and CuO at 1288 K in air. The crystal structure was determined by a joint Rietveld refinement of X‐ray and neutron powder diffraction data. La8Cu7O19 crystallizes in the monoclinic space group C2/c (No. 15) with the lattice parameters a = 13.8310(4)Å, b = 3.75827(9)Å, c = 34.5917(8)Å and β = 99.332(2)°. La8Cu7O19 is the n = 3 member of the homologous series La4+4nCu8+2nO14+8n. The Cu—O sub‐structure in La8Cu7O19 contains infinite ribbons, which can be described as perovskite type layers with a width of n = 3 Jahn‐Teller‐elongated octahedra, and Cu—O planes of complex geometry. DSC/TG‐measurements in different gas atmospheres show peritectic decomposition of La8Cu7O19. The anisotropic thermal expansion of the lattice parameters was investigated using synchrotron radiation. The Madelung part of lattice energy was calculated and compared with the corresponding values of other lanthanum cuprates.  相似文献   

2.
Preparative exploration of the system Ag—Mn—O under an elevated oxygen pressure yielded so far unknown Ag4Mn3O8. Single crystal X‐ray investigations have revealed a trigonal crystal system, space group P3121 with lattice parameters a = 12.5919(1) and c = 15.4978(1)Å. Due to fourfold twinning a large cubic unit cell with a ≈ 26Å is simulated. The structure, which was refined as a fourfold twin, is composed of MnO6 octahedra which are connected via common edges to a complex framework. The topology of this framework is closely related to the archetype cubic {10, 3} net. In the cavities of the framework the Ag+ ions are incorporated.  相似文献   

3.
4.
5.
The crystal structure of Li2B4O7 was studied by single crystal X‐ray diffraction whilst the substance was cooled down from room temperature to ?150 °C. The title compound crystallizes in the tetragonal, non‐centrosymmetric space group I 41cd (no. 110), a = 9.475(5) Å (r.t.), c = 10.283(6) Å (r.t.), R values for seven different data sets vary from 2.6 to 2.9 %. Low‐temperature single crystal examinations were combined with low‐temperature powder X‐ray diffraction experiments (?189 – +27 °C). The results are discussed in comparison with data earlier obtained at high temperatures (20 – 500 °C). No phase transitions or abrupt changes of the crystal structure were observed. The coordination sphere of the lithium ions is that of a distorted tetrahedron and remains almost unchanged, although the coordination number of the lithium ions decreases slightly with rising temperature, similarly to what was found for LiB3O5. An expected rigidity of the boron‐oxygen groups was confirmed. The thermal deformations of the [B4O7]2? framework occur according to the hinge mechanism. This indicates that the LiO4 chains change their winding on cooling, which leads to deformations along c.  相似文献   

6.
7.
Single crystals of a third modification of Ag2Te2O6 (denoted as Ag2Te2O6–III) and of Ag4TeO5 have been obtained as minor by‐products during hydrothermal phase formation experiments in the system Ag‐Hg‐Te‐O. The crystal structure of Ag2Te2O6–III (P21/c, Z = 4, a = 6.4255(10), b = 6.9852(11), c = 13.204(2) Å, β = 90.090(3)°, 1885 independent reflections, R[F2 > 2σ(F2)] = 0.0334, wR2(F2 all) = 0.0817) comprises tellurium in oxidation states +IV and +VI and is topologically related to the structure of the Ag2Te2O6–I modification, which consists of similar layers and interjacent layers of Ag+ cations. Ag4TeO5 (C2/c, Z = 8, a = 16.271(2), b = 6.0874(10), c = 11.4373(16) Å, β = 106.730(10)°, 2372 independent reflections, R[F2 > 2σ(F2)] = 0.0288, wR2(F2 all) = 0.0737) is made up of a layer‐like arrangement of isolated [TeVI2O10] double octahedra and of Ag+ cations situated both in layers parallel and inside the layers of the anionic moieties.  相似文献   

8.
Li7MO6 (M = Bi, Ru, Os) have been synthesized by solid state reaction of Li2O with Bi2O3, or MO2 (M = Ru, Os) and characterized using powder X‐ray diffraction, differential scanning calorimetry, magnetic susceptibility (for M = Ru, Os), ionic conductivity and 6Li solid state NMR (for M = Bi) measurements. All three compounds exhibit a temperature induced triclinic – rhombohedral phase transition. Structures of the new low temperature triclinic phases have been refined by the Rietveld method from powder X‐ray data using atomic parameters of Li7TaO6 as a starting model ( Li7BiO6 : triclinic, , a = 5.5071(1), b = 6.0425(1), c = 5.5231(1) Å, α = 116.912(1), β = 120.867(1), γ = 62.234(1)°, V = 133.96(1) Å3, Z = 1, T = 230 K; Li7RuO6 : triclinic, , a = 5.3654(1), b = 5.8584(1), c = 5.3496(1) Å, α = 117.182(1), β = 119.117(1), γ = 62.632(1)°, V = 124.43(1) Å3, Z = 1, T = 295 K; Li7OsO6 : triclinic, , a = 5.3786(1), b = 5.8725(1), c = 5.3591(1) Å, α = 117.193(1), β = 119.277(1), γ = 62.700(1)°, V = 125.15(1) Å3, Z = 1, T = 295 K). Upon cooling, Li7RuO6 and Li7OsO6 undergo a magnetic transition at 12 and 13 K, respectively, from the paramagnetic to the antiferromagnetic state. The higher ionic conductivity of Li7BiO6 at T < 300 °C, as compared to Li7RuO6 and Li7OsO6, can be ascribed to the undergoing of the triclinic – rhombohedral transition at a much lower temperature. At T > 300 °C, the ionic conductivity of all three compounds increases sharply due to the melting of the lithium sublattice; for Li7RuO6 and Li7OsO6 the latter effect is superimposed by the phase transitions to the rhombohedral modifications.  相似文献   

9.
The crystal structure of one of the simplest organoboron compounds, trimethyl borate does not appear to have been determined hitherto. The compound is of interest for the study of π‐donor ligands and their interaction with the π‐acceptor behavior of trigonal boron and the consequences of such interactions on molecular structure. We used powder neutron (with isotopically labeled material) and X‐ray diffraction to determine the crystal structure of trimethyl borate at 15 K and 200 K (neutron) and 200 K (X‐ray). The material is hexagonal (Z = 2) with a = b = 6.950(8) Å and c = 6.501(3) Å at 15 K. The unit cell volume is 272.00(1) Å3. The space group is P63/m (SG 176) at 15 K and 200 K. This is the first crystal structure solved on the Neutron Powder Diffractometer (NPDF) at the Lujan Center.  相似文献   

10.
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction.  相似文献   

11.
From solid state reactions of Ag2O and Sb2O3 at high temperatures under elevated oxygen pressures a new silver antimonate, Ag3SbO4, has been obtained. The crystal structure of Ag3SbO4 was determined from powder data (P4122 (no. 91) with a = 7.0436(1), c = 8.8665(1) Å, V = 439.88(2) Å3, Z = 4, Rp = 8,75 %, Rwp = 11.92 %, Rexp = 13.60 % ). Ag3SbO4 is isostructural to Ag3RuO4. The crystal structure is an ordered variant of the NaCl structure and consists of silver atoms and helical chains of edge sharing SbO6 octahedra running along c. Ag3SbO4 is diamagnetic and semiconducting (ρ = 50 Ω · cm at ambient temperature, Ea = 0.098 eV), and starts to decompose at 620 °C.  相似文献   

12.
Four Lewis‐base stabilized N‐silver(I) succinimide complexes of type [Ln·Rm·AgNC4H4O2] (L = N,N,N′,N′‐tetramethylethylenediamine (TMEDA), n = 1, m = 0, 2a ; L = P(OEt)3, n = 2, m = 0, 2b ; L = PPh3, m = 0, n = 2, 2c ; L = P(OMe)3, R = TMEDA, n = 1, m = 1, 2d ) were prepared by a “one‐pot” synthesis methodology and characterized. The molecular structures of 2a and 2c have been determined by using X‐ray single crystal analysis. Complex 2a exists as ion pair {[Ag(TMEDA)2]+[Ag(NC4H4O2)2]} in the solid state and complex 2c is a monomer with the three‐coordinate silver atom. Complex 2b was used as precursor in the deposition of silver for the first time by using MOCVD technique. The silver films obtained were characterized using scanning electron microscopy (SEM) and energy‐dispersion X‐ray analysis (EDX). SEM and EDX studies show that the dense and homogeneous silver films could be obtained.  相似文献   

13.
Seven 1,4‐phenylenebisphosphonates of monovalent ions, A(HO3PC6H4PO3H2) (A = Li, K, Rb, Cs, Tl, Ag and NH4), were synthesized and characterized by single‐crystal X‐ray diffraction, spectroscopic and thermal methods. These compounds and the reported sodium analogue have four structure types. The sodium compound, one‐dimensional lithium compound and pillared‐layered cesium compounds have different structure types, whereas the potassium, rubidium, thallium, ammonium and silver compounds have a pillared ladder‐like structure. They undergo initial thermal decomposition in the range of 120–270 °C. Moreover, the single crystal X‐ray structure of 1,4‐phenylenebisphosphonic acid was determined.  相似文献   

14.
After successful syntheses and structural refinements of the already known permanganates of cesium (Cs[MnO4]) and silver (Ag[MnO4]) we started to blend aqueous solutions of both components in various molar ratios. From crystallization experiments of these mixtures only three species of crystals with different chemical compositions were obtained: tricesium monosilver tetrakispermanganate (Cs3Ag[MnO4]4) and, depending upon the respective ratio, either additional silver permanganate or surplus cesium permanganate, namely. The new title compound crystallizes in the orthorhombic space group Pnnm (no. 58) with two formula units per unit cell and cell dimensions of a = 764.53(4), b = 1883.57(9) and c = 584.34(3) pm. The crystal structure of Cs3Ag[MnO4]4 consists of two crystallographically distinguishable cesium cations. (Cs1)+ is surrounded by fourteen oxygen atoms constructing a slightly distorted bicapped hexagonal prism. These polyhedra are connected through edge‐sharing with two other polyhedra of this kind to form chains along [001]. The chains are linked to each other via sixfold coordinated Ag+ cations (d(Ag–O) = 238–246 pm), arranged in such a manner that they link three oxygen atoms of two cesium polyhedra, leading to a two‐dimensional layer spreading out parallel to the (001) plane. Together with the two crystallographically different tetrahedral oxomanganate(VII) anions [MnO4] (d(Mn–O) = 161–162 pm) the other kind of cesium cations ((Cs2)+ with CN = 13) finally connect these layers three‐dimensionally.  相似文献   

15.
Different pathways for the preparation of organometallic manganese(IV) corroles with σ‐aryl ligands have been evaluated. The treatment of a manganese(III) corrole with Grignard reagents PhMgX (X = Cl, Br), followed by aerial oxidation yields oxidized halogenido complexes [(cor)MnIVX] instead of the anticipated organometallic compounds. Reaction of these halogenido species, especially the bromido compound, with excess Grignard reagents or with lithium aryls results in the formation of the desired σ‐aryl compounds via salt metatheses. Three examples of this class of rare complexes have been characterized by means of optical and 1H NMR spectroscopy, and in two cases single crystal X‐ray diffraction studies have been carried out. In the crystal, the molecular structures of the σ‐phenyl‐ and the σ‐(p‐bromophenyl) derivatives were observed to be very similar, albeit both species pack in different pattern.  相似文献   

16.
In situ Investigation of the Reaction of Ammonium Monomolybdate (NH4)2MoO4 with Ammonia: The Structure of (NH4)2[Mo3O10] The reactivity of both polymorphs of (NH4)2MoO4 with ammonia was investigated in a temperature range between 20 and 180 °C. Time and temperature controlled X‐ray powder diffraction as well as thermogravimetrical and differential thermal analysis were used to investigate this reaction.The formation of (NH4)2[Mo3O10] from (NH4)2MoO4 is reversible in a humid and irreversible in a dry NH3 gas flow. Heating (NH4)2MoO4(mP60) under an atmosphere of humid NH3 at about 170 °C forms (NH4)2[Mo3O10] and succesively cooling yields the (NH4)2MoO4(mS60) polymorph. (NH4)2[Mo3O10] crystallises isostructural to the potassium compound with space group C2/c (No. 15) and lattice constants a = 1398.2(4), b = 804.1(2), b = 921.0(3) pm and β = 98.833(4)°.  相似文献   

17.
Mn4+, Ce4+ and Sm3+ doped MgAl2Si2O8‐based phosphors were synthesized at 1300 °C by solid state reaction and characterized by thermogravimetry (TG), differential thermal analysis (DTA), X‐ray powder diffraction (XRD), photoluminescence (PL), thermoluminescence (TL) and scanning electron microscopy (SEM). The phosphors showed broad red emission bands in the range of 610–715 nm and different maximum intensity when activated by UV illumination. Such a red emission can be attributed to the intrinsic 2E→4A2 transitions of Mn4+.  相似文献   

18.
This study features the preparation of three new energetic C‐azido‐1, 2, 4‐triazoles, with the anion of one being a new binary C–N compound. 5‐Azido‐1H‐1, 2, 4‐triazole‐3‐carbonitrile ( 1 ) was prepared from 5‐amino‐1H‐1, 2, 4‐triazole‐3‐carbonitrile and further derivatized to 5‐azido‐1H‐1, 2, 4‐triazole‐3‐carbohydroximoyl chloride ( 5 ) with 3‐azido‐1H‐1, 2, 4‐triazole‐5‐carboxamidoxime ( 3 ) as an intermediate. The ability of 1 and 3 for salt formation was shown with the respective silver salts 2 and 4 . All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 1 , 3 , and 5 in the solid state were determined by single‐crystal X‐ray diffraction. The sensitivities towards various outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The silver salts were additionally tested for their potential as primary explosives.  相似文献   

19.
The tetranuclear compound [Mo2(O2C‐tBu)3]2(μ‐C2O4) ( 1 ) that is prepared from [Mo2(O2C‐tBu)3]4 and oxalic acid, was reacted with MnI2 · 2THF to form the polyoxomolybdate compound [Mn(CH3OH)6] [Mo8O16(OCH3)8(C2O4)] ( 2 ) in a complex redox reaction. Crystals of 2 were analyzed by single‐crystal X‐ray diffraction showing a octanuclear polyoxomolybdate dianion in which the Mo=O moieties are alternately connected through μ‐oxo and μ‐methoxo units. Charge balance in 2 is realized by a manganese(II) cation that is octahedrally coordinated by methanol ligands. The crystal structure is dominated by strong hydrogen bond interactions of the O–H ··· O type of methanol molecules coordinated to manganese as well as additional methanol molecules in the crystal lattice.  相似文献   

20.
An Anionic Oxohydroxo Complex with Bismuth(III): Na6[Bi2O2(OH)6](OH)2 · 4H2O Colourless, plate‐like, air sensitive crystals of Na6[Bi2O2(OH)6](OH)2 · 4H2O are obtained by reaction of Bi2O3 or Bi(NO3)3 · 5H2O in conc. NaOH (58 wt %) at 200 °C followed by slow cooling to room temperature. The crystal structure (triclinic, P 1¯, a = 684.0(2), b = 759.8(2), c = 822.7(2) pm, α = 92.45(3)°, ß = 90.40(3)°, γ = 115.60(2)°, Z = 1, R1, wR2 (all data), 0, 042, 0, 076) contains dimeric, anionic complexes [Bi2O2(OH)6]4— with bismuth in an ψ1‐octahedral coordination of two oxo‐ and three hydroxo‐ligands. The thermal decomposition was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In the final of three steps the decomposition product is Na3BiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号