首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We present a short, efficient synthetic route for the preparation of a novel polyfluorene copolymer (PF‐Q) containing two electron‐deficient, 2,4‐diphenylquinoline groups functionalized at the C‐9 positions of alternate fluorene units that form a three‐dimensional cardostructure. The presence of the rigid bulky pendent groups leads to a polyfluorene possessing a high glass‐transition temperature (207 °C) and very good thermal stability (5% weight loss observed at 460 °C). A photoluminescence study revealed that the Förster energy transfer from the excited quinoline groups to the polyfluorene backbone is very efficient; it also demonstrated that the commonly observed aggregate/excimer formation in polyfluorenes is suppressed very effectively in this polymer, even after it has been annealed at 150 °C for 20 h. A light emitting diode (LED) device prepared with PF‐Q as the emitting layer exhibits a stable blue emission with a maximum brightness of 1121 cd/m2 at 12 V and a maximum external quantum efficiency of 0.80% at 250 cd/m2. We also used PF‐Q, which contains diphenylquinoline units that behave as electron‐transporting side chains, as a host material and doped it with 2.4 wt % of a red‐emitting phosphorescent dye, Os(fppz), to realize a red electroluminescence with CIE color coordinates of (0.66, 0.34). The doped device exhibits a maximum external quantum efficiency of 6.63% (corresponding a luminance efficiency of 8.71 cd/A) at a current density of 47.8 mA/cm2, together with a maximum brightness of 10457 cd/m2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 859–869, 2005  相似文献   

2.
A series of fluorene derivatives containing nonsymmetric and bulky aromatic groups at C‐9 position were synthesized and used for the preparation of blue‐light‐emitting copolyfluorenes ( P1 – P4 ) by the Suzuki coupling polycondensation. The copolymers were characterized by molecular weight determination, elemental analysis, differential scanning calorimeter, thermogravimetric analysis, absorption and emission spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Their decomposition temperatures and glass transition temperatures are 423–441 °C and >120 °C, respectively. In film state, the copolyfluorenes exhibit blue photoluminescence at 425–450 nm, which remains almost unchanged after annealing at 200 °C in air for 60 min. Polymer light‐emitting diodes [ITO/PEDOT:PSS/ P1 – P4 /Ca(50 nm)/Al(100 nm)] show stable blue‐light emission under device operation with the CIE co‐ordinates being between (0.16, 0.07) and (0.17, 0.09). The light‐emitting diodes devices from P1 and P3 containing electron‐deficient oxadiazole units display enhanced performance, with the maximum brightness and maximum current efficiency being (4510 cd/m2 and 2.40 cd/A) and (2930 cd/m2, 1.19 cd/A), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2821–2834, 2009  相似文献   

3.
Novel polyfluorene copolymers alternately having an 1,3,4‐oxadiazole unit in the main chain were prepared by both one‐step and two‐step methods for polyoxadiazole synthesis. They displayed highly efficient blue photoluminescence, the properties of which were affected by the extent of conjugation and the changes in the electron density by a side chain. An electrochemical analysis of the polymers using cyclic voltammetry suggested that they could be used as electron‐transport/hole‐blocking materials as well as blue emission materials for polymer light‐emitting diodes. A simple double‐layer device consisting of poly(N‐vinylcarbazole) as a hole‐transport layer and poly[(9,9′‐didodecylfluorene‐2,7‐diyl)‐alt‐((1,4‐bis(1,3,4‐oxadiazole)‐2,5‐di(2‐ethylhexyloxy)phenylene)‐5,5′‐diyl)] as an emission layer exhibited narrow blue electroluminescence with a maximum at 430 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1058–1068, 2004  相似文献   

4.
A series of conjugated blue‐light‐emitting copolymers, PTC‐1 , PTC‐2 , and PTC‐3, comprised different ratios of electron‐withdrawing segments (spirobifluorene substituted with cyanophenyl groups) and electron‐donating segments (tricarbazole‐triphenylamines), has been synthesized. The structures of these polymers were characterized and their thermal, photophysical, electrochemical, and electroluminescence properties were measured. Incorporation of rigid spirobifluorene units into the copolymers led to blue‐shifted absorption peaks in dilute toluene solution. Cyclic voltammetric measurement indicated the bandgaps of the polymers were in the range of 2.77–2.94 eV. It was found that increasing cyanophenyl‐spirobifluorene content in the polymer backbone lowered both the HOMO and LUMO energy levels of the copolymers, which was beneficial for electron injection/transporting in the polymer layer of the device. OLED device evaluation indicated that all the polymers emitted sky blue to deep blue light when the pure polymers were used as the emissive layers in the devices with a configuration of ITO/PEDOT:PSS/polymers/CsF/Ca/Al. The devices have been optimized by doping 30 wt % PBD into the polymer layers. Among the doped devices, PTC‐2 showed the best performance with the turn‐on voltage of 3.0 V, maximum brightness of 7257 cd/m2, maximum current efficiency of 1.76 cd/A, and CIE coordinates of (0.15, 0.14). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 292–301, 2010  相似文献   

5.
Two new poly(p‐phenylene vinylene) derivatives OX1‐PPV and OX2‐PPV bearing two 1,3,4‐oxadiazole rings per repeat unit and a fully conjugated backbone with solubilizing dodecyloxy side groups were synthesized and investigated. The amorphous conjugated polymers had glass‐transition temperature values of 60–75 °C and emitted intense blue or greenish‐blue light in solution with photoluminescence (PL) emission maxima at 379–492 nm and PL quantum yields of 0.41–0.52. In the solid state they emitted yellowish‐green light with PL emission maxima at 533–555 nm. Cyclic voltammetry showed that both conjugated polymers had reversible reduction and irreversible oxidation, making them n‐type materials. The electron affinity of OX2‐PPV was estimated as 2.85 eV whereas that of OX1‐PPV was 2.75 eV. Yellow electroluminescence (EL) was achieved from single‐layer light‐emitting diodes of OX2‐PPV with an EL emission maximum at 555 nm and a brightness of 70 cd/m2. Polymer OX2‐PPV, which was functionalized with 2,6‐bis(1,3,4‐oxadiazole‐2‐yl)pyridine, demonstrated sensitivity to various metal ions as a fluorescence‐mode chemosensor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2112–2123, 2004  相似文献   

6.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
2,3,4,5‐Tetraarylsiloles are a class of important luminogenic materials with efficient solid‐state emission and excellent electron‐transport capacity. However, those exhibiting outstanding electroluminescence properties are still rare. In this work, bulky 9,9‐dimethylfluorenyl, 9,9‐diphenylfluorenyl, and 9,9′‐spirobifluorenyl substituents were introduced into the 2,5‐positions of silole rings. The resulting 2,5‐difluorenyl‐substituted siloles are thermally stable and have low‐lying LUMO energy levels. Crystallographic analysis revealed that intramolecular π–π interactions are prone to form between 9,9′‐spirobifluorene units and phenyl rings at the 3,4‐positions of the silole ring. In the solution state, these new siloles show weak blue and green emission bands, arising from the fluorenyl groups and silole rings with a certain extension of π conjugation, respectively. With increasing substituent volume, intramolecular rotation is decreased, and thus the emissions of the present siloles gradually improved and they showed higher fluorescence quantum yields (ΦF=2.5–5.4 %) than 2,3,4,5‐tetraphenylsiloles. They are highly emissive in solid films, with dominant green to yellow emissions and good solid‐state ΦF values (75–88 %). Efficient organic light‐emitting diodes were fabricated by adopting them as host emitters and gave high luminance, current efficiency, and power efficiency of up to 44 100 cd m?2, 18.3 cd A?1, and 15.7 lm W?1, respectively. Notably, a maximum external quantum efficiency of 5.5 % was achieved in an optimized device.  相似文献   

8.
To study the influence of a blue‐emitting iridium complex pendant on the optoelectronic properties of its 2,7‐polyfluorene (PF) derivatives with the carbazole and oxadiazole pendants, a class of 2,7‐PF derivatives containing carbazole, oxadiazole, and/without the cyclometalated iridium complex pendants in the C‐9 positions of fluorene unit were synthesized. Their thermal, photophysical, electrochemical, and electroluminescent (EL) properties were investigated. Among these 2,7‐PF derivatives (P 1 –P 4 ), P 2 and P 3 exhibited higher photoluminescence efficiency in dichloromethane and better EL properties in the single‐emissive‐layer polymer light‐emitting devices. The highest brightness of 3888 cd/m2 and the maximum current efficiency of 2.9 cd/A were obtained in the P 2 ‐ and P 3 ‐based devices, respectively. The maximum brightness and efficiency levels were 1.7 and 2.1 times, respectively, higher than the corresponding levels from the parent 2,7‐PF derivative (P 1 )‐based devices. Our work indicated that EL properties of 2,7‐PF derivatives can be improved by introducing the blue‐emitting iridium complex into the alkyl side chain of fluorine unit as pendant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
A series of random copolymers POC10{Poly(2,5‐bis[(5‐decyloxy‐phenyl)‐1,3,4‐oxadiazole]styrene)}‐co‐Poly(N‐vinylcarbazole) (PVK) with different nvk content were synthesized through common radical polymerization and were incorporated into light emitting diodes as emitting layers. The structures and properties of the copolymers were characterized and evaluated by GPC, TGA, DSC, UV, PL, CV, and EL analyses. All the polymers enjoy high thermal stability. Cyclic voltammetry revealed that, with the incorporation of N‐vinylcarbazole to the copolymer, these copolymers had high‐lying HOMO energy values, which facilitated hole injection. PL peaks in the film show blue‐shift compared with those in solutions and fluorescent quantum efficiency decreased with the nvk content increasing, which supported the efficient energy transfer from nvk units to the oxadiazole units. Single‐layer LEDs with the configuration of ITO/PEDOT/PC10‐nvk/Mg:Ag/Ag were fabricated, which emit a blue light around 440 and 490 nm with a maximum brightness of 675.3 cd/m2 and luminous efficiency of 0.108 cd/A. Moreover, we fabricated electrophosphorescent device from bipolar transport copolymer PC10‐nvk4 as host material and an orange‐light‐emitting iridium phosphor IrMDPP as guest. The maximum luminous efficiency of 0.548 cd/A was obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5452–5460, 2008  相似文献   

10.
New copoly(aryl ether)s ( P1 – P3 ) containing alternate 2,5‐dihexyloxy‐1,4‐di(m‐ethoxystyryl)benzene ( P1 , P2 ) or 2,5‐dihexyloxy‐1,4‐distyrylbenzene ( P3 ) chromophores and aromatic 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) segments were prepared by Horner reaction ( P1 and P2 ) or nucleophilic displacement reaction ( P3 ). They are basically amorphous materials with 5% weight‐loss temperature above 410 °C. Their absorption, photoluminescence spectra, and quantum yields are dependent on the composition of the isolated fluorophores. The emissions are exclusively dominated by 1,4‐distyrylbenzene segments via excitation energy transfer from electron‐transporting 1,3,4‐oxadiazole ( P1 ) or 3,3″‐terphenyldicarbonitrile ( P2 , P3 ) chromophores. The HOMO and LUMO energy levels have been estimated from their cyclic voltammograms, and the observations confirm that oxidation and reduction start from the emitting 1,4‐distyrylbenzene and electron‐transporting segments, respectively, indicating that both carriers affinity can be enhanced simultaneously. Among the two‐layer PLED devices (ITO/PEDOT/ P1 – P3 /Al), P1 exhibits the best performance with a turn‐on field of 4 × 105 V/cm and a maximum luminance of 225 cd/m2. However, P2 emits green–yellow light (555 nm), owing to the excimer emission. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5009–5022, 2005  相似文献   

11.
The solution processable alternating benzofuran/terfluorene copolymer bearing side oxadiazole groups ( PBF‐OXD ) was synthesized and its optoelectronic properties and color stability were investigated. Electron‐deficient and stereohindered oxadiazole units were used as pendent groups to compensate for the poor electron‐transporting ability of a p‐type polymer backbone, to depress the intermolecular π‐stacking, and to improve solubility while retaining polymer blue emission. PBF‐OXD showed a glass transition at 135 °C and an onset decomposition temperature of ~345 °C. A simple EL device, with the configuration of ITO/PEDOT:PSS/ PBF‐OXD /Ba/Al, displayed a stable blue emission (λmax = 434 nm), good color purity (full width half‐maximum = 59 nm), maximum brightness of 1400 cd/m2, and a maximum luminance efficiency of 0.95 cd/A. The PL and EL spectra changed slightly on annealing and on increasing the applied voltage. These results show that the as‐synthesized copolymer PBF‐OXD had integrated respective functions of its different building blocks and exhibited good thermal and color stability with improved EL performance. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5488–5497, 2009  相似文献   

12.
We have synthesized a blue-light-emitting polyfluorene derivative (PF-TPAOXD) that presents sterically hindered, dipolar pendent groups functionalized at the C-9 positions of alternating fluorene units. The incorporation of the dipolar side chains, each comprising an electron-rich triphenylamine group and an electron-deficient oxadiazole group connected through a π-conjugated bridge, endows the resultant polymer with higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy levels, which, consequently, lead to an increase in both hole and electron affinities. An electroluminescent device incorporating this polymer as the emitting layer exhibited a stable blue emission with a maximum brightness of 2080 cd/m2 at 12 V and a maximum external quantum efficiency of 1.4% at a brightness of 137 cd/m2. Furthermore, atomic force microscopy measurements indicated that the dipolar nature of PF-TPAOXD, in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment allowing the polar organometallic triplet dopant to be dispersed homogeneously. We also fabricated an electrophosphorescent device incorporating PF-TPAOXD as the host material doped with a red-emitting osmium complex to realize red electroluminescence with Commission Internationale de l'Eclairage color coordinates of (0.66, 0.34). The resulting device exhibited a maximum external quantum efficiency of 7.3% at a brightness of 1747 cd/m2 and a maximum brightness of 7244 cd/m2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2073–2084, 2007  相似文献   

13.
New light emitting dendrimers were synthesized by reacting 3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzoic acid or 3,5‐bis‐[3,5‐bis‐(3,5‐bis‐benzyloxy‐benzyloxy)‐benzyloxy]‐benzoic acid with a carbazolyl vinyl spirobifluorene moiety. A blue‐emitting core dye was encapsulated by multibenzyloxy dendrons, and two dendrimers having different densities of dendrons were prepared. Photoluminescence (PL) studies of the dendrimers demonstrated that at the higher density of benzyloxy dendrons, the featureless vibronic transitions were improved, causing lesser excimer emission. The similarity of the solution and solid emission spectra of the larger dendrimer, 10 , revealed the suppression of molecular aggregation in the solid film, which is attributed to the presence of the bulky benzyloxy dendrons. The electroluminescence spectra of multilayered devices made using 10 predominantly exhibited blue emissions; similar emission was observed in the PL spectra of its thin film. The multilayered devices made using 3 , 9 , and 10 showed luminances of 1021 cd m?2 at 5 V, 916 cd m?2 at 6 V, and 851 cd m?2 at 6.5 V, respectively. The largest dendrimer, 10 , bearing a greater number of benzyloxy dendrons, exhibited a blue‐like emission with CIE 1931 chromaticity coordinates of x = 0.16 and y = 0.13, which is due to the influence of a higher shielding effect. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 501–514, 2008  相似文献   

14.
This article presents the synthesis and electroluminescent (EL) properties of a stable blue‐light‐emitting copolyfluorene ( P1 ) consisting of carbazole, oxadiazole and charge‐trapping anthracene groups by Suzuki coupling reaction. The hole‐transporting carbazole and electron‐transporting oxadiazole improve charges injection and transporting properties, whereas the anthracene is the ultimate emitting chromophore. The thermal, photophysical, electrochemical, and EL properties of P1 were investigated by thermogravimetric analysis, differential scanning calorimeter, optical spectroscopy, cyclic voltammetry, and EL devices fabrication and characterization. P1 demonstrated high‐thermal stability with thermal decomposition and glass tranistion temperatures above 400 and 145°C, respectively. In film state, P1 showed blue emission at 451 nm attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light‐emitting diodes using P1 as the emitting layer (ITO/PEDOT:PSS/ P1 /Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11). The results indicate that copolyfluorene is a promising candidate for the blue‐emitting layer in the fabrication of efficient PLEDs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

15.
Blue light‐emitting materials are receiving considerable academic and industrial interest due to their potential applications in optoelectronic devices. In this study, blue light‐emitting copolymers based on 9,9′ ‐ dioctylfluorene and 2,2′‐(1,4‐phenylene)‐bis(benzimidazole) moieties were synthesized through palladium‐catalyzed Suzuki coupling reaction. While the copolymer consisting of unsubstituted benzimidazoles (PFBI0) is insoluble in common organic solvents, its counterpart with N‐octyl substituted benzimidazoles (PFBI8) enjoys good solubility in toluene, tetrahydrofuran, dichloromethane (DCM), and chloroform. The PFBI8 copolymer shows good thermal stability, whose glass transition temperature and onset decomposition temperature are 103 and 428 °C, respectively. Its solutions emit blue light efficiently, with the quantum yield up to 99% in chloroform. The electroluminescence (EL) device of PFBI8 with the configuration of indium‐tin oxide/poly(ethylenedioxythiophene):poly(styrene sulfonic acid)/PFBI8/1,3,5‐tris(1‐phenyl‐1H‐benzimidazole‐2‐yl)benzene/LiF/Al emits blue light with the maximum at 448 nm. Such unoptimized polymer light‐emitting diode (PLED) exhibits a maximum luminance of 1534 cd/m2 with the current efficiency and power efficiency of 0.67 cd/A and 0.20 lm/W, respectively. The efficient blue emission and good EL performance make PFBI8 promising for optoelectronic applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A novel copoly(aryl ether) ( P1 ) consisting of alternate emitting segments (distyrylbenzene) and a bipolar moiety composed of directly linked electron‐transporting aromatic 1,2,4‐triazole and hole‐transporting triphenylamine was synthesized. The copoly(aryl ether) is readily soluble in common organic solvents and exhibit good thermal stability with thermal decomposition temperature above 450 °C. The emission and the photoluminescence quantum yield of the copolymer are dominated by the emitting segments (distyrylbenzene) with longer emissive wavelength. Electron affinity of P1 is evidently enhanced after introducing the isolated bipolar unit, as confirmed by the lowered lowest unoccupied molecular orbital level (–2.77 eV) relative to P0 without bipolar unit (–2.34 eV). This results in improved emission efficiency of its polymer light‐emitting diode (indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/ P1 /LiF/Ca/Al) due to more balanced charges injection and transport. Blending P1 with poly(9,9‐dihexylfluorene) ( PF ) further improves the efficiency of the device; the best performance was obtained for PF / P1 = 20/0.8 (w/w) with maximum luminance and maximum luminance efficiency being significantly enhanced to 3260 cd/m2 and 1.08 cd/A, respectively, from 380 cd/m2 and 0.009 cd/A of P1 ‐based device. These results demonstrate that the bipolar moiety can be used to enhance charges injection and transport of electroluminescent polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Three families of fluorene–oxadiazole‐based polymers with confinement moieties have successfully been prepared by the two‐step method for polyoxadiazole synthesis. These polymers show good solubility in common organic solvents, high thermal stability, and strong violet and blue photoluminescence in solution and as films, respectively. Their low‐lying highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels originate from the electron deficiency of an oxadiazole moiety, and this suggests that they may be useful for blue‐emitting and electron‐transport/hole‐blocking layers in electroluminescent devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 674–683, 2003  相似文献   

18.
Mesogen‐jacketed liquid crystalline polymers (MJLCPs) with both electron‐transport oxadiazole and hole‐transport thiophene in the side chain were reported for their promising electroluminescent property. Monomers of 2,5‐bis{5‐[(4‐alkoxyphenyl)‐1,3,4‐oxadiazole]thiophen‐2‐yl}styrene (M‐Cm, m is the number of the carbons in the alkoxy groups, m = 8,10) were synthesized and confirmed by 1H‐NMR, mass spectrometry, and elemental analysis. The corresponding polymers were successfully obtained and characterized by thermal analysis, optical spectroscopy, cyclic voltammetry, electroluminescent analysis, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD). The polymers exhibited high decomposition temperatures reaching 382 °C and high Tg's reaching 184 °C. The absorption spectra indicated that both the monomers and polymers had little aggregation in film than that in solution, and the absorption spectra of the polymers showed an obvious blue‐shift compared with those of the monomers. Both the monomers and the polymers had blue‐green emission, and the photoluminescence spectra of the polymers in film suggested the formation of excimer or exciplex. The polymers showed lower HOMO energy levels and LUMO energy levels than those of the MJLCPs containing oxadiazole unit reported before. Electroluminescence study with the device configuration of ITO/PEDOT/PVK/polymer/TPBI/Ca/Ag showed maximum brightness and current efficiency of 541 cd/m2 and 0.10 cd/A, which proved that the introduction of directly connected electron‐ and hole‐transport units could greatly improve the EL property of side‐chain conjugated polymers. The phase structures of the polymers were confirmed to be smectic A phase through the results of PLM and WAXD. The annealed samples emitted polarized photoluminescence at room temperature, which indicated potential utility for practical applications in display. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1502–1515, 2010  相似文献   

19.
For the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐ terfluorene ( Hb‐TF ), Hb ‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole ( Hb‐BFBT ), and Hb‐ 4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole ( Hb‐BFTBT ) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF , Hb‐BFBT , and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF , Hb‐BFBT , and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号