首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The multiconfigurational spin tensor electron propagator method (MCSTEP) was developed as an implementation of electron propagator/single particle Green's function methods for ionization potentials (IPs) and electron affinities (EAs). MCSTEP was specifically designed for open shell and highly correlated (nondynamically correlated) initial states. For computational efficiency the initial state used in MCSTEP is typically a small complete active space (CAS) multiconfigurational self‐consistent field (MCSCF) state. If in a molecule there are some degenerate orbitals which are not fully or half occupied, usual MCSCF calculations will make these orbitals inequivalent, i.e., the occupied ones will be different from the nonoccupied ones, so that the degeneracy is broken. In this article, we use a state averaged MCSCF method to get equivalent orbitals for the initial state and import the integrals into the subsequent MCSTEP calculations. This gives, in general, more reliable MCSTEP vertical IPs. © 2008 Wiley Periodicals, Inc., 2008  相似文献   

2.
The multiconfigurational spin tensor electron propagator method (MCSTEP) was developed as an implementation of electron propagator/single particle Green's function methods. MCSTEP was specifically designed for open shell and highly correlated (nondynamically correlated) initial states. The initial state used in MCSTEP is typically a small complete active space (CAS) with multiconfigurational self‐consistent field (MCSCF) state. In some cases, because of our use of a small CAS in MCSTEP, the Lagrangian eigenvalues of the MCSCF reference state are in an undesired order (u). The desired order (d) can usually be obtained by excluding one or more orbital rotations in MCSCF optimization between the doubly occupied and partially occupied orbitals. We systematically examine several cases where the undesired order occurs for the low‐lying vertical MCSTEP ionization potentials (IPs) of the molecules CO, HCN, HNC, H2CO, and O3 with our recently established CAS choices for MCSCF/MCSTEP. By excluding one or more orbital rotations between the partially and doubly occupied orbitals, an approximate MCSCF reference state with the same CAS choice is obtained for use in standard MCSTEP calculations that, in general, gives more reliable vertical MCSTEP IPs. © 2007 Wiley Periodicals, Inc. J Quantum Chem, 2008  相似文献   

3.
4.
A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalence restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.  相似文献   

5.
The problem of determining SCF wave functions for excited electronic states is examined for singlet states of two-electron systems using a Lowdin natural orbital transformation of the full CI wave function. This analysis facilitates the comparison of various SCF methods with one another. The distribution of the full CI states among the natural orbital MCSCF states is obtained for the S states of helium using a modest Gaussian basis set. For SCF methods that are not equivalent to the full CI wave functions, it is shown that the Hartree-Fock plus all single excitation wave functions are equivalent to that of Hartree-Fock plus one single excitation. It is further shown that these wave functions are equivalent to the perfect pair or TCSCF wave functions in which the CI expansion coefficients are restricted to have opposite signs. The case of the natural orbital MCSCF wave function for two orbitals is examined in greater detail. It is shown that the first excited state must always be found on the lower natural orbital MCSCF CI root, thus precluding the use of the Hylleras-Undeim-MacDonald (HUM) theorem in locating this state. It is finally demonstrated that the solution obtained by applying the HUM theorem (minimizing the upper MCSCF CI root with respect to orbital mixing parameters) is an artifact of the MCSCF method and does not correspond to any of the full CI states.  相似文献   

6.
We investigate the magnetic state of a recently synthesized [2 × 2]‐metal‐organic grid complex as a function of its redox state. Our analysis of a phenomenological model for the relevant molecular orbitals reveals that additional electrons on the ligands can couple their spins via the bridging metal sites. We find that at certain stages of the reduction of the complex cation, a maximal total spin ground state of the complex (S = 3/2) can be stabilized by the Nagaoka mechanism. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
8.
Effective solutions for two difficulties which may be present in MCSCF calculation are discussed: (i) We show how the large configuration state function state expansion case may be handled simply and effectively without the introduction of extraneous projection operators or Lagrange multipliers; (ii) we present a simplified two-electron integral transformation procedure which significantly reduces the operation count (and hence computational efficiency is increased) for second order and particularly for third order MCSCF procedures. The procedures we introduce use some freedom available in the orthogonal complement Cl space and the virtual orbital space to simplify MCSCF calculations.  相似文献   

9.
Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss‐type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so‐called two‐potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth‐order final continuum state and the first‐order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss‐type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular‐frame photoelectron angular distributions of and . In the calculations of , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
An attempt to construct a multiple core‐hole state within the optimized effective potential (OEP) methodology is presented. In contrast to the conventional Δ‐self‐consistent field method for hole states, the effects of removing an electron is achieved using some orthogonality constraints imposed on the orbitals so that a Slater determinant describing a hole state is constrained to be orthogonal to that of a neutral system. It is shown that single, double, and multiple core‐hole states can be treated within a unified framework and can be easily implemented for atoms and molecules. For this purpose, a constrained OEP method proposed earlier for excited states (Glushkov and Levy, J. Chem. Phys. 2007, 126, 174106) is further developed to calculate single and double core ionization energies using a local effective potential expressed as a direct mapping of the external potential. The corresponding equations, determining core‐hole orbitals from a one‐particle Schrödinger equation with a local potential as well as correlation corrections derived from the second‐order many‐body perturbation theory are given. One of the advantages of the present direct mapping formulation is that the effective potential, which plays the role of the Kohn–Sham potential, has the symmetry of the external potential. Single and double core ionization potentials computed with the presented scheme were found to be in agreement with data available from experiment and other calculations. We also discuss core‐hole state local potentials for the systems studied. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The idea of dilation, or dilatation, analyticity with respect to complex scaling of the interparticle distances for nonrelativistic atomic or molecular electronic Hamiltonians is now over 20 years old and the first major reviews are just over 10. The method continues to be a fruitful source of new theoretical and computational results. Under the scale transformation rre, the usual “spectrum” of bound states is exactly preserved, and scattering continua are “rotated” off the real axis by an angle of −2Re(θ) about their respective thresholds. Useful features of this transformation are (1) that resonances are exposed, and, thus, (complex) resonance eigenvalues are easily calculated as the wave functions are L2, and standard results of Kato-type perturbation theory can thus be applied to them; (2) that utilization of this technique to study atoms in ac and dc fields was an early, and still evolving extension of the original theory; and (3) the fact that the “continua” are rotated off the real energy axis allows scattering information to be extracted from computations carried out entirely L2 in bases as the usual resolvents of scattering theory are no longer singular on the real axis. After a brief survey of the technique and its applications, these ideas are illustrated by discussion of positive energy-bound states and resonances, the extension of the theory to include the dc Stark effect, and a review of the resolution of the initially perplexing problem of atomic and molecular bound states in continua. These theoretical results are followed by a discussion of some very recent computational results, allowing computation of atomic partial photoionization cross sections with no specific coordinate space enforcement of boundary conditions, a highly advantageous situation for calculation of the partial cross section for three-body breakup, as in the process ℏ ω + He → He2+ + e + e. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
A novel approach is developed for optimizing molecular orbitals within the context of a multiconfiguration self-consistent-field problem. The MCSCF wave function is determined through a sequence of eigenvalue problems in the multiconfiguration space and the single-excitation space. They are used to iteratively improve the natural orbitals, which in turn are related, by successively improved transformations, to the MCSCF orbitals. The mathematical problems arising out of this general concept are solved and the computational implementation is discussed. In many applications the method has proven itself as a powerful approach in forcing rapid convergence. Adaptation to spin and spatial symmetry is maintained throughout and the procedure is applicable to excited states as well as to ground states.  相似文献   

13.
This work presents multi‐state multi‐reference Møller–Plesset second‐order perturbation theory as a variant of multi‐reference perturbation theory to treat electron correlation in molecules. An effective Hamiltonian is constructed from the first‐order wave operator to treat several strongly interacting electronic states simultaneously. The wave operator is obtained by solving the generalized Bloch equation within the first‐order interaction space using a multi‐partitioning of the Hamiltonian based on multi‐reference Møller–Plesset second‐order perturbation theory. The corresponding zeroth‐order Hamiltonians are nondiagonal. To reduce the computational effort that arises from the nondiagonal generalized Fock operator, a selection procedure is used that divides the configurations of the first‐order interaction space into two sets based on the strength of the interaction with the reference space. In the weaker interacting set, only the projected diagonal part of the zeroth‐order Hamiltonian is taken into account. The justification of the approach is demonstrated in two examples: the mixing of valence Rydberg states in ethylene, and the avoided crossing of neutral and ionic potential curves in LiF. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

14.
Moses et al, have derived an algorithm using the Gel'fand-Levitan equation for generating exactly solvable potentials for a particle in a box, harmonic oscillator, and Coulomb potentials by adding or subtracting a finite number of eigenvalues. We propose that their algorithm can be used to evaluate effective potentials for non exactly soluble molecular model Hamiltonians. We show that the algorithm can be used to remove bound states from the spectrum and to obtain an effective potential which supports predissociation resonances only. It can also be used to remove a specific resonance state from the spectrum, and to facilitate evaluations of excited states.  相似文献   

15.
The efficacy of several multiconfiguration self-consistent field (MCSCF) methods in the subsequent spin-orbit coupling calculations was studied. Three MCSCF schemes to generate molecular orbitals were analyzed: state-specific, state-averaged, and dynamically weighted MCSCF. With Sn(2)(+) as the representative case, we show that the state-specific MCSCF orbitals lead to discontinuities in potential energy curves when avoided crossings of electronic states occur; this problem can be solved using the state-averaged or dynamically weighted MCSCF orbitals. The latter two schemes are found to give similar results when dynamic electron correlation is considered, which we calculated at the level of multiconfigurational quasidegenerate perturbation theory (MCQDPT). We employed the recently developed Douglas-Kroll spin-orbit adapted model core potential, ZFK3-DK3, and the dynamically weighted MCSCF scheme to calculate the spectroscopic constants of the mono-hydrides and compared them to the results obtained using the older set of potentials, MCP-TZP. We also showed that the MCQDPT tends to underestimate the dissociation energies of the hydrides and discussed to what extent coupled-cluster theory can be used to improve results.  相似文献   

16.
We present a complex multiconfigurational self‐consistent field (CMCSCF)‐based approach to investigate electron‐atom scattering resonances. It is made possible by the use of second quantization algebra adapted for biorthogonal spin orbitals, which has been applied to develop a quadratically convergent CMCSCF method. To control the convergence to the correct CMCSCF stationary point, a modified step‐length control algorithm is introduced. Convergence to a tolerance of 1.0 × 10?10 a.u. for the energy gradient is found to be typically within 10 iterations or less. A method involving the first block of the M matrix defined in the multiconfigurational spin tensor electron propagator method (MCSTEP) based on the CMCSCF reference state has been implemented to investigate 2P Be? shape resonances. The position and width of these resonances have been calculated for different complete active space choices. The wide distribution of the position and width of the resonance reported in the literature is explained by the existence of two distinct resonances which are close in energy. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
A survey of the XCNY and XCCHY radicals with X and Y = CH(2), NH, and O has been carried out by ab initio QCISD/6-311G(d,p) calculations to assess the impact of low-lying excited electronic states on the molecular dynamics. Multiple canonical structures may be drawn for each of these structural formulas, with the principal competition for most stable configuration between a (2)A' form with four electrons in a" orbitals and a (2)A" form with five a" electrons. Other low-lying configurations may include a 5a" state with nominally pentavalent nitrogen and a 6a" state. Optimized geometries and harmonic frequencies were evaluated for the lowest-energy minima on the potential energy surfaces. Localized unpaired electron density causes the 4a" state to be the most stable for (NH)CCHO and OCCHY, whereas allylic resonance stabilization favors the 5a" state for all other radicals in the set. For five of the 18 molecules studied, secondary minima (excluding conformers) are found within 30 kJ mol(-)(1) of the most stable state at the QCISD/6-311G(d,p) level, suggesting that photolysis or pyrolysis of parent compounds may result in multiple isomers of the resulting reactive intermediates. Predicted equilibrium geometries, approximate thermochemical quantities for dissociation of the central bond, and selected spectroscopic parameters are presented for all 18 structural formulas. Convergence tests were also performed for the glyoxallyl radical (OCCHO) to resolve discrepancies between single- and multireference post-SCF results. These tests find that extension of the MCSCF methods to include sigma bonding orbitals or virtual-orbital CI brings MCSCF relative energies into agreement with results from standard single-reference CI and CC methods. Relative configurational energies evaluated at Hartree-Fock levels routinely differ from post-SCF values by 30 kJ mol(-1) or more.  相似文献   

18.
Multichannel quantization is performed with a complex rotation of the coordinates for both bound states and resonances. Two examples are considered: (a models corresponding to overlapping resonances with two harmonic potentials and a linear potential, for which analytical solutions can be formulated; ( photodissociation of a linear triatomic system. The purpose of these studies is two-fold (i) illustrating that the localization of the resonance wavefu upon rotation allows for the use of boundary conditions identical to those prevailing for a bound state. Our numerical experiments show that complex ro does provide a simple solution for the initialization for large interparticle distance and that closely lying resonant energies can be accurately deter (ii) examining two versions of the complex rotation method when there is more than one coordinate. One may either rotate all coordinates in the startin hamiltonian and derive coupled equations from this transformed hamiltonian, or rotate the coordinate in the coupled equations derived from the untransf hamiltonian. We observe, and demonstrate numerically, that the first version, in the case of a bound state, can only provide a real energy after conver results are obtained. The photodissociation rates obtained in the two versions of the method are shown to agree well with those obtained with a coupled approach with real coordinates. However, the occurrence of spurious widths due to truncation in the number of channels or inaccuracies in the numerical may prevent the study of narrow resonances.  相似文献   

19.
A new multiconfigurational self-consistent field (MCSCF) method based on successive optimizations of Jacobi rotation angles is presented. For given one- and two-particle density matrices and an initial set of corresponding integrals, a technique is developed for the determination of a Jacobi angle for the mixing of two orbitals, such that the exact energy, written as a function of the angle, is fully minimized. Determination of the energy-minimizing orbitals for given density matrices is accomplished by successive optimization and updating of Jacobi angles and integrals. The total MCSCF energy is minimized by alternating between CI and orbital optimization steps. Efficiency is realized by optimizing CI and orbital vectors quasi-simultaneously by not fully optimizing each in each improvement step. On the basis of the Jacobi-rotation based approach, a novel MCSCF procedure is formulated for excited states, which avoids certain shortcomings of traditional excited-state MCSCF methods. Applications to specific systems show the practicability of the developed methods.  相似文献   

20.
Localized orbitals have recently been employed in large ab initio calculations, but their use has generally been restricted to ground‐state problems. In this work, we analyze the molecular orbitals of the excited states, optimized with a recently proposed local procedure. This method produces local orbitals of the CAS–SCF type, which permits its application to the study of excited states. In particular, we focus on the π→π* triplet excited state in polyenes, calculated using a 2/2 CAS space which includes two electrons in one π and one π* orbitals. In small polyenes, these two singly occupied active orbitals are delocalized all along the molecule. The extent of the delocalization is analyzed by studying polyenes of increasing size. Different polyenes have been studied, going from C14H16 to the C70H72 polyene. The relation of the π→π* excitation with the cation and anion systems is also discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号