首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divinyl ether monomers containing phosphorous residues were synthesized by the addition reaction of glycidyl vinyl ether (GVE) with various phosphonic dichlorides or dichlorophosphates with quaternary onium salts as catalysts. The reaction of GVE with phenylphosphonic dichloride gave bis[1‐(chloromethyl)‐2‐(vinyloxy)ethyl]phenylphosphonate ( 1a ) in a 77% yield. The polycondensation of 1a with terephthalic acid was also carried out with 1,8‐diazabicyclo[5.4.0]undecene‐7 (DBU) as a condensing agent to afford the corresponding phosphorus‐containing polyester. A multifunctional monomer containing both vinyl ether groups and methacrylate groups was prepared by the reaction of 1a with methacrylic acid with DBU. The photoinitiated cationic polymerization of these vinyl ether compounds proceeded rapidly with bis[4‐(diphenylsulfonio)phenyl]sulfide‐bishexafluorophosphate as the cationic photoinitiator without a solvent upon ultraviolet irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2031–2042, 2004  相似文献   

2.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

3.
Starting with nopol [(R)‐(−)‐2‐(2′‐hydroxyethyl)‐6,6‐dimethyl‐8‐oxatricyclo[3.1.1.12,3]octane, I] as a substrate, two new, interesting monomers, allyl nopol ether epoxide III and nopol 1‐propenyl ether epoxide IV, were prepared. The photoinitiated cationic polymerizations of these two monomers as well as several other model compounds were studied using real‐time infrared spectroscopy. Surprisingly, the rates of epoxide ring‐opening polymerization of both monomers were enhanced as compared to those of the model compounds. Two different mechanisms which involve the free radical induced decomposition of the diaryliodonium salt photoinitiator were proposed to explain the rate acceleration effects. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1199–1209, 1999  相似文献   

4.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

5.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   

6.
Several 1‐butenyl and 1‐pentenyl ether monomers were prepared by the ruthenium catalyzed multistage double bond isomerization of the corresponding 3‐butenyl and 4‐pentenyl ethers and characterized. Employing tris(triphenylphosphine)ruthenium(II) dichloride as a catalyst, the isomerization of octyl 4‐pentenyl ether to octyl 1‐pentenyl ether in 60% yield could be achieved in 110 min at 200–205°C. Under similar conditions, 3‐butenyl octyl ether was isomerized to 1‐butenyl octyl ether in greater than 99% yield. The reactivities of both types of monomers in photoinitiated cationic polymerization were determined using real‐time infrared spectroscopy and the monomers were found to polymerize at very nearly the same rate in the presence of a diaryliodonium salt photoinitiator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 199–209, 1999  相似文献   

7.
Controlled cationic polymerization of isobutyl vinyl ether was demonstrated to proceed in an ionic liquid (IL), 1‐butyl‐3‐octylimidazolium bis(trifluoromethanesulfonyl)imide, using a 1‐(isobutoxy)ethyl acetate/TiCl4 initiating system, ethyl acetate as an added base, and 2,6‐di‐tert‐butylpyridine as a proton trap reagent. Judicious choices of metal halide catalysts, counteranions of ILs, and additives were essential for controlling the polymerization. The polymerization proceeded much faster in the IL than in CH2Cl2, indicating an increased population of ionic active species in the IL due to the high polarity. Polymers with a relatively narrow molecular weight distribution were obtained in the IL with a bis(trifluoromethanesulfonyl)imide ( ) anion even in the absence of an added base, which suggested possible interactions of the counteranion of the IL with the growing carbocations. Moreover, the direct cationic polymerization of a vinyl ether with pendant imidazolium salts, 1‐(2‐vinyloxyethyl)‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide, proceeded in a homogeneous state in 1‐methyl‐3‐octylimidazolium bis(trifluoromethanesulfonyl)imide. The solubilities of the obtained polymers were readily tuned by counteranion exchange. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1774–1784  相似文献   

8.
To clarify the effects of the central spacer chain structure of divinyl ethers on their cationic cyclopolymerization tendencies, 1,4‐bis[(2‐vinyloxy)ethoxy]benzene ( 1 ), 1,4‐bis[(2‐vinyloxy)ethoxy]butane ( 2 ), 1,6‐bis[(2‐vinyloxy)ethoxy]hexane ( 3 ), 1,8‐bis[(2‐vinyloxy)ethoxy]octane ( 4 ), and 1,4‐bis[(4‐vinyloxy)butoxy]butane ( 5 ) were polymerized with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in methylene chloride (CH2Cl2) at 0 °C at low initial monomer concentration ([M]0 = 0.15 M). The polymerizations of divinyl ethers 2 and 3 gave soluble polymers quantitatively. In contrast, the polymerizations of divinyl ethers 1 , 4 , and 5 underwent gel formation at high monomer conversion. The content of the unreacted vinyl groups of the obtained soluble polymers was measured by 1H NMR spectroscopy. Judging from the relatively low vinyl contents of the polymers produced even in the early stage of the polymerization (monomer conversion < ~20%), the cyclopolymerization occurred to some extent for 2 , 3 , and 4 . On the contrary, the polymers produced from 1 and 5 exhibited the relatively high vinyl content, indicating that the cyclopolymerization tendencies of 1 and 5 were lower than those of 2 , 3 , and 4 . These results are discussed in terms of the structural variety of the spacer chains: (1) the presence of benzene ring ( 1 vs 2 ), (2) their length ( 2 vs 3 and 4 ), and (3) the position of ether oxygen ( 4 vs 5 ). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4002–4012, 2002  相似文献   

9.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

10.
Stereoregulation in the cationic polymerization of various alkyl vinyl ethers was investigated with bis[(2,6‐diisopropyl)phenoxy]titanium dichloride ( 1 ; catalyst) in conjunction with the HCl adduct of isobutyl vinyl ether as an initiator in n‐hexane at −78 °C. The tacticities depended on the substituents of the monomers. Isobutyl and isopropyl vinyl ethers gave highly isotactic polymers (mm = 83%), whereas tert‐butyl and n‐butyl vinyl ethers resulted in lower isotactic contents (mm ∼ 50%) similar to those for TiCl4, a conventional Lewis acid, thus indicating that the steric bulkiness of the substituents was not the critical factor in stereoregulation. A statistical analysis revealed that the high isospecificity was achieved not by the chain end but by the catalyst 1 or the counteranion derived therefrom. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1060–1066, 2001  相似文献   

11.
Stimuli‐responsive gradient copolymers, composed of various monomers, were synthesized by living cationic polymerization in the presence of base. The monomers included thermosensitive 2‐ethoxyethyl vinyl ether (EOVE) and 2‐methoxyethyl vinyl ether (MOVE), hydrophobic isobutyl vinyl ether (IBVE) and 2‐phenoxyethyl vinyl ether (PhOVE), crystalline octadecyl vinyl ether (ODVE), and hydrophilic 2‐hydroxyethyl vinyl ether (HOVE). The synthesis of gradient copolymers was conducted using a semibatch reaction method. Living cationic polymerization of the first monomer was initiated using a conventional syringe technique, followed by an immediate and continuous addition of a second monomer using a syringe pump at regulated feed rates. This simple method permitted precise control of the sequence distribution of gradient copolymers, even for a pair of monomers with very different relative monomer reactivities. The stimuli‐responsive gradient, block and random copolymers exhibited different self‐association behavior. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6444–6454, 2008  相似文献   

12.
A series of aromatic monomers bearing cationically polymerizable propenyl groups were prepared and characterized using the readily available starting materials: isoeugenol and o-allyl phenol. Monomers with both propenyl and vinyl ether functional groups were also synthesized by the reaction of these starting materials with chloroethyl vinyl ether. The reactivity of the resulting monomers in photoinitiated cationic polymerization was studied using differential scanning photocalorimetry and photogel point measurements. Their thermal properties were determined using thermogravimetric analysis. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Several novel mesogenic spiro-orthoester monomers such as 1,6,10-trioxaspiro[4,5]decanes 4 , containing biphenyl mesogens at the C-8 positions of the five- and six-membered spirocyclic ring, through the alkylene spacers of different lengths were prepared by condensation reaction of the corresponding biphenyl mesogenic 1,3-propanediol 3 with 2,2-diethoxytetrahydrofuran, with 50–75% yields. Through cationic double ring-opening polymerization, carried out with boron trifluoride etherate as an initiator (5 mol % vs. monomer) in bulk at 150°C, spiro-orthoester monomers 4 afforded a novel class of side-chain thermotropic LC polymers with a poly(ether ester) as the main chain 8 . The liquid-crystalline properties of the spiro-orthoester monomers and the resulting polymers were examined by differential scanning calorimetry and optical polarized microscopy. Biphase separation was observed in the side-chain liquid-crystalline poly(ether ester)s upon annealing in the broad isotropic region. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2439–2455, 1998  相似文献   

14.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

15.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers has been carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of the monomer structure on the frontal behavior of these monomers have been examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers display a prolonged induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy is required to induce the further reaction of these species with a consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations have been observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior has been found to be related to their ability to stabilize the secondary oxonium ion intermediates through multiple hydrogen‐bonding effects to the ether groups present in the molecule. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6435–6448, 2006  相似文献   

16.
The combination of living/controlled cationic cyclopolymerization and crosslinking polymerization of bifunctional vinyl ethers (divinyl ethers) was applied to the synthesis of core‐crosslinked star‐shaped polymers with rigid cyclized arms. Cyclopolymerization of 4,4‐bis(vinyloxymethyl)cyclohexene ( 1 ), a divinyl ether with a cyclohexene group, was investigated with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in toluene at 0 °C. The reaction proceeded quantitatively to give soluble poly( 1 )s in organic solvents. The content of the unreacted vinyl groups in the produced polymers was less than ~3 mol%, and therefore, the degree of cyclization of the polymers was determined to be ~97%. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture, indicating that living cyclopolymerization of 1 occurred. The chain linking reactions among the formed living cyclopolymers with 1,4‐bis(vinyloxy)cyclohexane ( 3 ) as a crosslinker in toluene at 0 °C produced core‐crosslinked star‐shaped cyclopoly( 1 )s [star‐poly( 1 )s] in high yield (100%). Dihydroxylation of the cyclohexene double bonds of star‐poly( 1 ) gave hydrophilic water‐soluble star‐shaped polymers with rigid arm structure [star‐poly( 1 )‐OH] with thermo‐responsive function in water. Tgs of star‐poly( 1 ) and star‐poly( 1 )‐OH were 135 °C and 216 °C, respectively; these values are very high as vinyl ether‐based star‐shaped polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1094–1102  相似文献   

17.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

18.
Sulfonium‐containing polymers prepared from dibenzothiophene and diphenyl sulfide were applied as both alkylating agents and latent initiators for the cationic polymerization of glycidyl phenyl ether. The alkylation of acetonitrile proceeded smoothly with poly(Sn‐octyl‐2‐vinyldibenzothiophenium tetrafluoroborate) ( 4 ; 64 mol % octyldibenzothiophenium tetrafluoroborate unit) to give N‐(n‐octyl)acetamide in an excellent yield on the basis of the starting octyldibenzothiophenium tetrafluoroborate unit in 4 . The cationic polymerization of glycidyl phenyl ether was also carried out in the presence of poly(S‐methyl‐2‐vinyldibenzothiophenium tetrafluoroborate) or poly(Sn‐octyl‐4‐vinyldiphenylsulfonium tetrafluoroborate) to confirm their moderate thermal latent activity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3928–3933, 2001  相似文献   

19.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers was carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of various experimental parameters, such as the photoinitiator type and concentration, as well as the effects of the monomer structure on the frontal behavior of these monomers were examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers displayed a prominent induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy was required to induce the further reaction of these species with the consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations were observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior was found to be related to their ability to stabilize the secondary oxonium ion intermediates through hydrogen‐bonding effects. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3036–3052, 2006  相似文献   

20.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号