首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach for representing, efficiently calculating and comparing discrete three-dimensional molecular electrostatic potentials using a quantitative similarity index (MEP-SI) based on a Carbo-type formalism is presented. A radial-type (MACRA) grid representation is described that provides more efficient storage of MEP information than a cubic grid of similar range, appropriate emphasis, and a convenient means for restricting the comparison of MEP functions to a local molecule region. The MACRA based MEP-SI formalism was used to evaluate the suitability of a variety of approximate methods for efficiently calculating the MEP for use in MEP-SI comparison of dissimilar molecules. The Mulliken charge method was found inadequate, while the method of potential-derived charges (PDCs), with additional charges for lone electron pairs included on sulfur, provided an efficient and sufficiently accurate representation of the MEP for this purpose. Convergence of the MEP-SI with respect to MACRA grid extent and mesh size was demonstrated; the effect of MEP error and different grid point emphasis in the MACRA versus the cubic grid results was investigated, and MEP-SI results were compared for different forms of the SI equation. The methodology proposed in this study provides an efficient and practical means for comparing MEP functions for two molecules and gives discriminating results for a sample series of molecular analogues consistent with expectations.  相似文献   

2.
This paper reports a method for the identification of those molecules in a database of rigid 3D structures with molecular electrostatic potential (MEP) grids that are most similar to that of a user-defined target molecule. The most important features of an MEP grid are encoded in field-graphs, and a target molecule is matched against a database molecule by a comparison of the corresponding field-graphs. The matching is effected using a maximal common subgraph isomorphism algorithm, which provides an alignment of the target molecule's field- graph with those of each of the database molecules in turn. These alignments are used in the second stage of the search algorithm to calculate the intermolecular MEP similarities. Several different ways of generating field-graphs are evaluated, in terms of the effectiveness of the resulting similarity measures and of the associated computational costs. The most appropriate procedure has been implemented in an operational system that searches a corporate database, containing ca. 173,000 3D structures.  相似文献   

3.
A quantitative comparative analysis of molecular electrostatic potential (MEP) distributions generated from different wave functions was carried out. Wave functions were computed by using MNDO, AMl, STO-3G, 3-21G, 4-31G, 6-31G, 4-31G*, 6-31G*, and 6-31G** methods. Ten different compounds, which include usual atoms and groups of biomolecules, such as hydroxyl, carbonyl, amine, amide, imine, double and triple bonds, and heteroaromatic rings, were studied. For each compound, MEP values in the points of a common 3-D grid were computed; thereafter, the similarity between each pair of MEP distributions generated by different methods was assessed. Similarities were measured using the Spearman rank correlation coefficient. A similarity matrix was obtained for each compound. Similarity matrices were averaged and a hierarchical cluster analysis was carried out to classify the different quantum chemical methods. In the compounds studied, the main conclusion is the negligible difference between the pattern of MEP distributions generated from all split valence basis sets (with and without polarization functions). © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A systematic analysis was performed on the suitability of the molecular electrostatic potential (MEP) and MEP-derived properties determined by means of density functional (DFT) methods. Attention was paid to the electrostatic potential (ESP) derived charges, the ESP and exact quantum mechanical dipole moments, the depth of MEP minima, and the MEP distribution in layers around the molecule for a large series of molecules. The electrostatic properties were determined at either local or nonlocal DFT levels using different functionals. The results were compared with the values estimated from quantum mechanical calculations performed at Hartree–Fock, Møller–Plesset up to fourth order, and CIPSI levels. The suitability of the MEP-derived properties estimated from DFT methods is discussed for application in different areas of chemical interest. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 980–991, 1997  相似文献   

5.
6.
《印度化学会志》2022,99(12):100786
The (Z)-4-(((5-methylfuran-2-yl) methylene)amino)-N -(thiazol-2-yl) benzene sulfonamide (5M2FTH) was synthesized and characterized by the Infrared, UV–Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on 5M2FTH. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. UV spectra was simulated using TD-DFT with implicit solvation model. The HOMO-LUMO, MEP, and NLO properties were carried out in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and stability of this molecule. Pharmacological analysis was performed using Swiss-ADME and found that the compound is a potential drug candidate. PASS analysis revealed that the molecule can show antiparasitic properties which is confirmed by molecular docking against the target protein.  相似文献   

7.
In this theoretical study, we report on the molecular electrostatic potential (MEP) of titled molecules confined by repulsive potentials of cylindrical symmetry mimicking a topology. Our calculations show that the spatial restriction significantly changes the picture of the MEP of molecules in a quantitative and qualitative sense. In particular, the drastic changes in the MEP as a function of the strength of spatial confinement are observed for the BrCN molecule. This preliminary study is the first step in the investigation of the behavior of the MEP of molecular systems under orbital compression.  相似文献   

8.
《印度化学会志》2023,100(1):100836
The 4-((diphenylmethylene)amino)-N-(pyrimidin-2-yl)benzenesulfonamide (BENDA) was synthesized and characterized by the Infrared, UV-Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on BENDA. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model was used to study the calculated UV-Visible spectrum. The HOMO-LUMO, MEP, and NLO properties were carried out in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and the stability of this molecule. A pharmacological analysis is done using an online tool like Swiss-ADME, to see if the molecule could be a potential drug candidate; this evaluation looks at the drug-likeness, ADME, and eco-friendly toxicity properties of the BENDA molecule. Auto-dock suite and Discovery studio Visualizer are used to do molecular docking against 5UVC protein.  相似文献   

9.
A chemometric approach based on the combined use of the principal component analysis (PCA) and artificial neural network (ANN) was developed for the multicomponent determination of caffeine (CAF), mepyramine (MEP), phenylpropanolamine (PPA) and pheniramine (PNA) in their pharmaceutical preparations without any chemical separation. The predictive ability of the ANN method was compared with the classical linear regression method Partial Least Squares 2 (PLS2). The UV spectral data between 220 and 300 nm of a training set of sixteen quaternary mixtures were processed by PCA to reduce the dimensions of input data and eliminate the noise coming from instrumentation. Several spectral ranges and different numbers of principal components (PCs) were tested to find the PCA-ANN and PLS2 models reaching the best determination results. A two layer ANN, using the first four PCs, was used with log-sigmoid transfer function in first hidden layer and linear transfer function in output layer. Standard error of prediction (SEP) was adopted to assess the predictive accuracy of the models when subjected to external validation. PCA-ANN showed better prediction ability in the determination of PPA and PNA in synthetic samples with added excipients and pharmaceutical formulations. Since both components are characterized by low absorptivity, the better performance of PCA-ANN was ascribed to the ability in considering all non-linear information from noise or interfering excipients.  相似文献   

10.
《印度化学会志》2022,99(11):100735
In this present study, we investigated pharmaceutically active of 3-Bromo-4-chlorobenzophenone. Structural, electronic properties (HOMO-LUMO, MEP) are investigated using DFT tool. Vibrational spectral analysis for FT-IR and FT-Raman are made of headline molecule. Electronic transition properties are discussed with the help of UV–Vis spectral analysis. Biologically active sites are found from MEP analysis. Electron delocalization properties are studied explored from HOMO-LUMO band gap energy. Moreover, intra molecular interactions are explained from NBO method. Molecular docking studies are performed to find the interactions various pathologies. The topological properties of the electron density have been analyzed.  相似文献   

11.
《印度化学会志》2023,100(2):100885
The compound (E)-4-((2-hydroxybenzylidene)amino)N-(thiazol-2-yl) benzene sulfonamide (SATH) was synthesized and characterized by the Infrared, UV–Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on SATH. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model was used to study the calculated UV–Visible spectrum. The HOMO-LUMO, MEP, and NLO properties were carried out DFT/B3LYP/cc-pVDZ basis set in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and the stability of this molecule. A pharmacological analysis is done using an online tool like Swiss-ADME, to see if the molecule could be a potential drug candidate; this evaluation looks at the drug-likeness, ADME, and eco-friendly toxicity properties of the PFPT molecule. Auto-dock suite and Discovery studio Visualizer are used to do molecular docking against 6ZZB protein.  相似文献   

12.
Summary MEPSIM is a computational system which allows an integrated computation, analysis, and comparison of molecular electrostatic potential (MEP) distributions. It includes several modules. Module MEPPLA supplies MEP values for the points of a grid defined on a plane which is specified by a set of three points. The results of this program can easily be converted into MEP maps using third-parties graphical software. Module MEPMIN allows to find automatically the MEP minima of a molecular system. It supplies the cartesian coordinates of these minima, their values, and all the geometrical relationships between them (distances, angles, and dihedral angles). Module MEPCOMP computes a similarity coefficient between the MEP distributions of two molecules and finds their relative position that maximizes the similarity. Module MEPCONF performs the same process as MEPCOMP, considering not only the relative position of both molecules but also a conformational degree of freedom of one of them. The most recently developed module, MEPPAR, is another modification of MEPCOMP in order to compute the MEP similarity between two molecules, but only taking into account a particular plane. The latter module is particularly useful to compare MEP distributions generated by systems of aromatic rings. MEPSIM can use several wavefunction computation approaches to obtain MEP distributions. MEPSIM has a menu type interface to simplify the following tasks: creation of input files from output files of external programs (GAUSSIAN and AMPAC/MOPAC), setting the parameters for the current computation, and submitting jobs to the batch queues of the computer. MEPSIM has been coded in FORTRAN and its current version runs on VMS/VAX computers.  相似文献   

13.
This study deals with the identification of a title compound, 3-[(2-morpholinoethylimino)methyl]benzene-1,2-diol by means of quantum chemical calculations. The optimized molecular structures, vibrational frequencies and corresponding vibrational assignments, thermodynamic properties, charge analyses, nuclear magnetic resonance (NMR) chemical shifts and ultraviolet-visible (UV-vis) spectra of the title molecule in the ground state were evaluated using density functional theory (DFT) with the standard B3LYP/6-311++G(d,p) method and basis set combination for the first time. Theoretical vibrational spectra of the title compound were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results show that the obtained optimized geometric parameters (bond lengths, bond angles and bond dihedrals) and vibrational frequencies were observed to be in good agreement with the available experimental results. Moreover, the calculations of the electronic spectra, (13)C and (1)H chemical shifts were compared with the experimental ones. Furthermore, we not only simulated the frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) but also determined the transition states and energy band gaps, as well. It was found that charge analyses supported the evidences of MEP. Infrared intensities and Raman activities were also reported.  相似文献   

14.
《印度化学会志》2023,100(1):100835
The (Z)-N-(pyrimidin-2-yl)-4-(thiophen-2-ylmethylene)amino) benzenesulfonamide (TH2DA) were synthesized and characterized by the Infrared, UV–Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on TH2DA. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model were used to study the calculated UV–Visible spectrum. The HOMO-LUMO, MEP, and NLO properties were carried out in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and stability of this molecule. A pharmacological analysis is done using online tool like Swiss-ADME, to see if the molecule could be potential drug candidate; this evaluation looks at the drug-likeness, ADME and eco-friendly toxicity properties of the TH2DA molecule. Auto-dock suite and Discovery studio Visualizer are used to do molecular docking studies.  相似文献   

15.
Latha  N.  Barathi  D.  Uthaya Kumar  M.  Vinitha  G.  Mani  Rajaboopathi  Atac  Ahmet  Kose  Etem 《Research on Chemical Intermediates》2021,47(6):2469-2486

The structural and nonlinear optical properties of the Schiff base material, (E)-4-fluoro-N′-(pyridin-2-ylmethylene)benzohydrazide monohydrate (FPMBH) were studied. The experimental investigations were performed using Fourier transform infrared (FTIR), ultraviolet (UV) and nuclear magnetic resonance (NMR) spectral techniques. The computational analyses were made by DFT method. A comparison between experimental and theoretical predictions was made and interpreted. The maximum absorption wavelength was found by both experimental and theoretical analyses. The Hirshfeld surface analysis was performed to understand the various molecular interactions. Highest occupied and lowest unoccupied molecular orbitals (HOMO–LUMO) analysis was performed for the title molecule to know about the possible charge transfer taking place within the molecule. Reactivity features were also determined by molecular electrostatic potential (MEP) analysis. The third-order nonlinear optical studies were done by z-scan experiment, and the results were discussed.

  相似文献   

16.
《印度化学会志》2023,100(2):100903
The (E)-4-((1-phenylethylidene)amino)-N-(pyrimidin-2-yl) benzenesulfonamide (ACEDA) were synthesized and characterized by the Infrared, UV–Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on ACEDA. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model were used to study the calculated UV–Visible spectrum. The HOMO-LUMO, MEP, and NLO properties were carried out using DFT/B3LYP/cc-pVDZ basis set. The NBO calculations are used to study how charges move between and within the molecule and stability of this molecule. A pharmacological analysis is done using online tool like Swiss-ADME, to see if the molecule could be potential drug candidate; this evaluation looks at the drug-likeness, ADME and eco-friendly toxicity properties of the ACEDA molecule. Auto-dock suite and Discovery studio Visualizer are used to do molecular docking.  相似文献   

17.
《印度化学会志》2022,99(12):100785
The compound (E)-1-(perfluorophenyl)-N-(p-tolyl)methanimine (PFPT) was synthesized and characterized by the Infrared, UV–Visible, and NMR analysis. Using density functional theory, the current work is a set of theoretical studies on PFPT. The compound molecular structure and geometry were defined using DFT. Topological studies, like electron localized function, localized orbital locator, average localized ionization energy, and reduced density gradient studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model used to study the calculated UV–Visible spectrum, we used two different solvents. The HOMO-LUMO, MEP, and NLO properties were carried out by DFT/B3LYP/cc-pVDZ in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and the stability of this molecule. A pharmacological analysis is done using an online tool like Swiss-ADME, to see if the molecule could be a potential drug candidate; this evaluation looks at the drug-likeness, ADME, and eco-friendly toxicity properties of the PFPT molecule. Auto-dock suite and Discovery studio Visualizer are used to do molecular docking against 2QFA protein.  相似文献   

18.
Principal component analysis (PCA) and other multivariate analysis methods have been used increasingly to analyse and understand depth profiles in X‐ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and secondary ion mass spectrometry (SIMS). These methods have proved equally useful in fundamental studies as in applied work where speed of interpretation is very valuable. Until now these methods have been difficult to apply to very large datasets such as spectra associated with 2D images or 3D depth‐profiles. Existing algorithms for computing PCA matrices have been either too slow or demanded more memory than is available on desktop PCs. This often forces analysts to ‘bin’ spectra on much more coarse a grid than they would like, perhaps even to unity mass bins even though much higher resolution is available, or select only part of an image for PCA analysis, even though PCA of the full data would be preferred. We apply the new ‘random vectors’ method of singular value decomposition proposed by Halko and co‐authors to time‐of‐flight (ToF)SIMS data for the first time. This increases the speed of calculation by a factor of several hundred, making PCA of these datasets practical on desktop PCs for the first time. For large images or 3D depth profiles we have implemented a version of this algorithm which minimises memory needs, so that even datasets too large to store in memory can be processed into PCA results on an ordinary PC with a few gigabytes of memory in a few hours. We present results from ToFSIMS imaging of a citrate crystal and a basalt rock sample, the largest of which is 134GB in file size corresponding to 67 111 mass values at each of 512 × 512 pixels. This was processed into 100 PCA components in six hours on a conventional Windows desktop PC. © 2015 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd.  相似文献   

19.
《印度化学会志》2023,100(1):100824
The compound (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino)-N-(thiazole-2-yl) benzene sulfonamide (5NVTH) was synthesized and characterized by the Infrared, UV-Visible, and NMR analysis. The compound theoretical study was done by using DFT. The compound molecular structure and geometry were defined using DFT. Topological studies, like ELF, LOL, ALIE, and RDG studies, were done with the Multiwfn-3.8 to find the main binding areas and weak interactions in the molecule. Using the IEFPCM solvation model was used to study the calculated UV-Visible spectrum. The HOMO-LUMO, MEP, and NBO properties were carried out in the gas phase. The NBO calculations are used to study how charges move between and within the molecule and the stability of this molecule. A pharmacological analysis is done using an online tool like Swiss-ADME, to see if the molecule could be a potential drug candidate; this evaluation looks at the drug-likeness, ADME, and eco-friendly toxicity properties of the 5NVTH molecule. Auto-dock suite is used for molecular docking study and discovery studio is used for analyzing the docking results. Antimicrobial activity studies indicate the compound Klebsiella pneumonia and Candida albicans have good antibacterial and antifungal activity compared to positive control and other microorganisms.  相似文献   

20.
Recently, the investigation of novel molecularly imprinted polymers(MIPs) has attracted a lot of interest and becomes a fascinating field. The phenobarbital(PHN) was taken as an imprinted molecule and the 2-vinyl-4,6-diamino-1,3,5-triazine(VDAT) was considered as a functional monomer in this study. The geometry optimization, natural bond orbital(NBO) charge, and molecular electrostatic potential(MEP) of PHN and VDAT were studied at the M062 X level belonging to one of the hybrid density functional theories. Furthermore, we discussed the bonding conditions of PHN molecular imprinted polymers(PHN-MIPs) via the hydrogen bond length and atoms in molecules(AIM) theory. The rebinding property of PHN-MIPs was also researched. The results of MEP and NBO charge analysis were coincident. The stability property was excellent when the ratio of PHN and VDAT was 1:4. Except the classic hydrogen bonds, non-classical hydrogen bonds also existed in the imprinted polymers. By simulating the rebinding energies between the pentobarbital(PNT), barbital(BAR), and PHN-MIPs after the elution of PHN, the rebinding property of PHN-MIPs to PHN was excellent when PNT and BAR existed all at once. This research can provide theoretical reference for the synthesis and characterization of novel PHN-MIPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号