首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
New mixed ligand complexes of transition metals were synthesized from a Schiff base (L1) obtained by the condensation reaction of oxamide and furfural as primary ligand and 2,2′‐bipyridine (L2) as secondary ligand. The ligands and their metal complexes were studied using various spectroscopic methods. Also thermal analyses were conducted. The mixed ligand complexes were found to have formulae [M(L1)(L2)]Clm n H2O (M = Cr(III) and Fe(III): m  = 3, n  = 0; M = Cu(II) and Cd(II): m  = 2, n  = 1; M = Mn(II), Co(II), Ni(II) and Zn(II): m  = 2, n  = 0). The resultant data revealed that the metal complexes have octahedral structure. Also, the mixed ligand complexes are electrolytic. The biological and anticancer activities of the new compounds were tested against breast cancer (MCF‐7) and colon cancer (HCT‐116) cell lines. The results showed high activity for the synthesized compounds.  相似文献   

2.
3.
Two metal‐organic coordination polymers with one‐dimensional infinite chain motif, [Cd(bqdc)(phen)2]n ( 1 ) and [Co(bqdc)(phen)(H2O)2]n ( 2 ) (H2bqdc = 2,2′‐biquinoline‐4,4′‐dicarboxylic acid, phen = 1,10‐phenanthroline), have been synthesized under similar solv/hydrothermal conditions and fully structural characterized by elemental analysis, IR, and single‐crystal X‐ray crystallography. Their thermal stability and photoluminescence properties were further investigated by TG‐DTA and fluorescence spectra. In both complexes, the adjacent metal ions (CdII for 1 and CoII for 2 ) are linked together by dicarboxylate groups of bqdc dianions in chelating bidentate and monodentate modes, respectively, generating a zigzag chain for 1 and linear chain for 2 . The relatively higher thermal stability up to 324 °C for 1 and strong fluorescence emissions jointly suggest that they are good candidates for luminescent materials.  相似文献   

4.
Two transition metal‐organic coordination polymers, [Mn2(1,3‐bdc)2(Me2bpy)2] · Me2bpy ( 1 ) and [Co(4,4′‐oba)(Me2bpy)] ( 2 ) were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectroscopy, TG, and single‐crystal X‐ray diffraction [1,3‐H2bdc = benzene‐1,3‐dicarboxylic acid, H2oba = 4,4′‐oxybis(benzoic acid) Me2bpy = 4,4′‐dimethyl‐2,2′‐bipyridine]. Compound 1 crystallizes in the orthorhombic system, space group P212121, with a = 23.371(5), b = 14.419(3), and c = 14.251(3) Å. Compound 2 crystallizes in the monoclinic system, space group P21/c, with a = 7.4863(15), b = 18.272(4), c = 16.953(5) Å, and β = 107.44(3)°. The crystal structure of complex 1 is a wave‐like layer with central Mn2+ atoms bridged by 1,3‐bdc ligands, whereas the structure of compound 2 presents a ladder chain of hexacoordinate Co2+ atoms, in which the metal atoms are bridged by 4,4′‐oba ligands and decorated by Me2bpy ligands. The two compounds are further extended into 3D supramolecular structures through π–π stacking interactions. Additionally, the compounds show intense fluorescence in solid state at room temperature.  相似文献   

5.
Catalytic oxidative polymerization of 2,2′‐dihydroxybiphenyl (DHBP) was performed by using both the Schiff base monomer‐Cu(II) complex and Schiff base polymer‐Cu(II) complex compounds as catalysts and hydrogen peroxide as oxidant, respectively. The dependence of monomer conversion and molecular weight distribution on various reaction parameters, including time, temperature, solvent as well as the amount of catalyst and oxidant were investigated. The structure of the poly‐2,2′‐dihydroxybiphenyl (PDHBP) was confirmed by UV‐vis, IR, 1H and 13C NMR spectroscopy techniques. The electrochemical and thermal properties of PDHBP were also studied. DSC data revealed that PDHBP was amorphous. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2977–2984, 2009  相似文献   

6.
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004  相似文献   

7.
The new synthesized ligand (DADMBTZ = 2,2′‐diamino‐5,5′‐dimethyl‐4,4′‐bithiazole), which is mentioned in this text, is used for preparing the two new complexes [Zn(DADMBTZ)3](ClO4)2. 0.8MeOH.0.2H2O ( 1 ) and [Cd(DADMBTZ)3](ClO4)2 ( 2 ). The characterization was done by IR, 1H, 13C NMR spectroscopy, elemental analysis and single crystal X‐ray determination. In reaction with DADMBTZ, zinc(II) and cadmium(II) show different characterization. In 2 , to form a tris‐chelate complex with nearly C3 symmetry for coordination polyhedron, DADMBTZ acts as a bidentate ligand. In 1 , this difference maybe relevant to small radii of Zn2+ which make one of the DADMBTZ ligands act as a monodentate ligand to form the five coordinated Zn2+ complex. In both 1 and 2 complexes the anions are symmetrically different. 1 and 2 complexes form 2‐D and 3‐D networks via N‐H···O and N‐H···N hydrogen bonds, respectively.  相似文献   

8.
Coordination polymers (CPs) have attracted increasing interest in recent years. In this work, two new CPs, namely poly[[aquabis(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylatophenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}(μ‐formato‐κ3O:O,O′)dicadmium(II)] monohydrate], {[Cd2(C16H9O7)(HCO2)(C10H8N2)2(H2O)]·H2O}n ( 1 ), and poly[[(2,2′‐bipyridine‐κ2N,N′){μ3‐5‐[(4‐carboxylphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ4O1,O1′:O3:O5}manganese(II)] sesquihydrate], {[Mn(C16H10O7)(C10H8N2)]·1.5H2O}n ( 2 ), have been prepared using the tricarboxylic acid 5‐[(4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylic acid and 2,2′‐bipyridine under hydrothermal conditions. CP 1 displays a two‐dimensional layer structure which is further extended into a three‐dimensional (3D) supramolecular structure via intermolecular π–π interactions, while CP 2 shows a different 3D supramolecular structure extended from one‐dimensional ladder chains by intermolecular π–π interactions. In addition, the solid‐state luminescence spectra of 1 and 2 were studied at room temperature.  相似文献   

9.
Syntheses and Structures of Bis(4,4′‐t‐butyl‐2,2′‐bipyridine) Ruthenium(II) Complexes with functional Derivatives of Tetramethyl‐bibenzimidazole [(tbbpy)2RuCl2] reacts with dinitro‐tetramethylbibenzimidazole ( A ) in DMF to form the complex [(tbbpy)2Ru( A )](PF6)2 ( 1a ) (tbbpy: bis(4,4′‐t‐butyl)‐2,2′bipyridine). Exchange of the two PF6? anions by a mixture of tetrafluor‐terephthalat/tetrafluor‐terephthalic acid results in the formation of 1b in which an extended hydrogen‐bonded network is formed. According to the 1H NMR spectra and X‐ray analyses of both 1a and 1b , the two nitro groups of the bibenzimidazole ligand are situated at the periphery of the complex in cis position to each other. Reduction of the nitro groups in 1a with SnCl2/HCl results in the corresponding diamino complex 2 which is a useful starting product for further functionalization reactions. Substitution of the two amino groups in 2 by bromide or iodide via Sandmeyer reaction results in the crystalline complexes [(tbbpy)2Ru( C )](PF6)2 and [(tbbpy)2Ru( D )](PF6)2 ( C : dibromo‐tetrabibenzimidazole, D : diiodo‐tetrabibenzimidazole). Furthermore, 2 readily reacts with 4‐t‐butyl‐salicylaldehyde or pyridine‐2‐carbaldehyde under formation of the corresponding Schiff base RuII complexes 5 and 6 . 1H NMR spectra show that the substituents (NH2, Br, I, azomethines) in 2 ‐ 6 are also situated in peripheral positions, cis to each other. The solid state structure of both 2 , and 3 , determined by X‐ray analyses confirm this structure. In addition, the X‐ray diffraction analyses of single crystals of the complexes [(tri‐t‐butyl‐terpy)(Cl)Ru( A )] ( 7 ) and [( A )PtCl2] ( 8 ) display also that the nitro groups in these complexes are in a cis‐arrangement.  相似文献   

10.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

11.
4′‐Substituted derivatives of 2,2′:6′,2′′‐terpyridine with N‐containing heteroaromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N‐donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N‐donor sites would also allow for the diversification of the types of noncovalent interactions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′‐terpyridine nucleus (tpy), with a pendant isoquinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with interplanar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy…Hisq contact of 2.32 Å. There are no strong noncovalent interactions in the structure, the main ones being of the π–π and C—H…π types, giving rise to columnar arrays along [001], further linked by C—H…N hydrogen bonds into a three‐dimensional supramolecular structure. An Atoms In Molecules (AIM) analysis of the noncovalent interactions provided illuminating results, and while confirming the bonding character for all those interactions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy…Hisq contact of 2.32 Å to which AIM ascribed an attractive character.  相似文献   

12.
Poly(phenylacetylene)s containing pendant phosphorescent iridium complexes have been synthesized and their electrochemical, photo‐ and electroluminescent properties studied. The polymers have been synthesized by rhodium‐catalyzed copolymerization of 9‐(4‐ethynylphenyl)carbazole (CzPA) and phenylacetylenes (C∧N)2Ir(κ2O,O′‐MeC(O)CHC(O)C6H4C?CH‐4) (C∧N = κ2N,C1‐2‐(pyridin‐2‐yl)phenyl (IrppyPA) or κ2N,C1‐2‐(isoquinolin‐1‐yl)phenyl (IrpiqPA)). In addition, organic poly(phenylacetylene)s with pendant carbazole groups have been synthesized by rhodium‐catalyzed copolymerization of CzPA and 1‐ethynyl‐4‐pentylbenzene. Complex (C∧N)2Ir(κ2O,O′‐MeC(O)CHC(O)Ph) (IrpiqPh; C∧N = 2‐(isoquinolin‐1‐yl)phenyl‐κ2N,C1) was prepared and characterized. While the copolymers of the Irppy series were weakly phosphorescent, those of the Irpiq series displayed at room temperature intense emissions from the carbazole (fluorescence) and iridium (phosphorescence) emitters, being the latter dominant when the spectra were recorded using polymer films. Triple layer OLED devices employing copolymers of the Irpiq series or the model complex IrpiqPh yielded electroluminescence with an emission spectra originating from the iridium complex and maximum external quantum efficiencies of 0.46% and 2.99%, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3744–3757, 2010  相似文献   

13.
In this work, four bimetallic Ru(II)–Ir(III) complexes with the general formula [(bpy)2Ru(bpm)Ir(C^N)2](PF6)3 (bpy = 2,2‐bipyridine, bpm = 2,2′‐bipyrimidine, C^N = 2‐phenylpyridinato ( 2 ), (2‐p‐tolyl)pyridinato ( 3 ), 2‐(2,4‐difluorophenyl)pyridinato ( 4 ), and 2‐thienylpyridinato ( 5 )) were synthesized. Complexes 2 – 5 were characterized by NMR spectroscopy, high‐resolution mass spectrometry, and elemental analysis. The structures of the complexes 2 and 4 were further confirmed by single‐crystal X‐ray diffraction analysis. All the complexes display strong absorption in the high‐energy UV region assigned to intraligand (IL) transitions, and the lower energy bands are ascribed to metal‐to‐ligand charge transfer (MLCT) transitions. The reduction and oxidation behavior of the complexes 2 – 5 were examined by cyclic voltammetry. Variation of the ligands on Ir(III) center resulted in significant changes in electrochemical properties.  相似文献   

14.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

15.
The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5′‐dmbpy)2]ClO4·H2O (where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate–5,5′‐dmbpy–KClO4 system. Within the complex cation, the NiII atom is hexacoordinated by two chelating 5,5′‐dmbpy ligands and one chelating ac ligand. The mean Ni—N and Ni—O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen‐bonded centrosymmetric dimers, which are further connected by π–π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single‐ion anisotropy, D, which arises from the reduced local symmetry of the cis‐NiO2N4 chromophore. The fitting of the variable‐temperature magnetic data (2–300 K) gives giso = 2.134 and D/hc = 3.13 cm−1.  相似文献   

16.
Two noble metal complexes involving ancillary chloride ligands and chelating 2,2′‐bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin‐2‐yl‐κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin‐2‐yl‐κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square‐planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the pyridine rings in normal and deprotonated 2,2′‐dipyridylamine is discussed on the basis of the structural features of these complexes. The influence of weak interactions on the supramolecular structures of the complexes, providing one‐dimensional chains of [PtCl4(C10H9N3)] and dimers of [AuCl2(C10H8N3)], are discussed.  相似文献   

17.
A classical model of “molecular machine,” which acts as an ON–OFF switch for 2,2′‐bipyridyl‐3,3′‐15‐crown‐5 ( L ), has been theoretically studied. It is highly important to understand the mechanism of this switch. The alkali‐metal cations (Na+ and K+) and W(CO)4 fragment are introduced to coordinate with the different active sites of L , respectively. The density functional theory (DFT) method is used for understanding the stereochemical structural natures and thermodynamic properties of all the target molecules at B3LYP/6‐31G(d) and SDD (Stuttgart–Dresden) level, together with the corresponding effective core potential (ECP) for tungsten (W). The fully optimized geometries have been performed with real frequencies, which indicate the minima states. The nucleophilicity of L has been investigated by the Fukui functions. The natural bond orbital analysis is used to study the intermolecular charge‐transfer interactions and explore the origin of the internal forces of the molecular switch. In addition, the binding energies, enthalpies, Gibbs free energies, and the cation exchange energies have been studied for L , W(CO)4 L , and their corresponding complexes. The properties of the complexes displayed by in presence or absence of the W(CO)4 fragment are also analyzed. The calculated results of allosterism displayed by L are in a good agreement with the experimental results. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

19.
Conformational properties of 2,2′‐bithiazole and 4,4′‐dimethyl‐2,2′‐ bithiazole have been studied by using AM1 and PM3 semiemperical methods and ab initio HF/6‐311+G* and B3LYP/6‐311+G* calculations. All methods agree that the planar s‐trans conformation is the global minimum and the perpendicular conformation is the transition state. Additional local minima were found using the Hartree–Fock (HF) and B3LYP levels for 2,2′‐bithiazole while for 4,4′‐dimethyl derivative the minima was located only at the MP2//B3LYP level. The barrier heights for rotation are 1.72, 7.69, and 7.88 kcal/mol at the PM3, HF, and B3LYP levels, respectively, and methyl substitution did not affect appreciably this value. Fourier expansion terms and bond orders were used to explain the origins of the rotational barrier in terms of π conjugation, electrostatic interaction, and steric effects, which represent the main factors in the shape of the rotational barrier. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 367–377, 2000  相似文献   

20.
The molecular structures of trichlorido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaCl3(C15H11N3)], and tribromido(2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)gallium(III), [GaBr3(C15H11N3)], are isostructural, with the GaIII atom displaying an octahedral geometry. It is shown that the Ga—N distances in the two complexes are the same within experimental error, in contrast to expected bond lengthening in the bromide complex due to the lower Lewis acidity of GaBr3. Thus, masking of the Lewis acidity trends in the solid state is observed not only for complexes of group 13 metal halides with monodentate ligands but for complexes with the polydentate 2,2′:6′,2′′‐terpyridine donor as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号