首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Copolymers of styrene and 4‐vinylpyridine with a styrene fraction f varying from 1 to 0 were grafted onto a silicon substrate in the melt. The grafting reaction and the stability of the grafted chains were investigated by Fourier transform infrared and X‐ray photoelectron spectroscopy. The thickness and surface morphology of the grafted copolymer layers were characterized with ellipsometry and atomic force microscopy (AFM). The copolymer chains were successfully grafted to the surface of the silicon substrate by a reaction between the hydroxyl groups of the nitroxide moiety at the end of the copolymers and the silanol groups on the surface of the silicon wafer. A measurement of the thickness of the grafted copolymer layers showed that the ratio of grafted‐layer thickness to the unperturbed chain radius of gyration decreased with the increasing fraction of 4‐vinylpyridine in the copolymer; this indicated that the grafted layer was strongly attracted to the substrate. In addition, an accelerated grafting process was observed at grafting times ranging from 48 to 72 h for pure poly(4‐vinylpyridine) and copolymers with f values of 0.3 and 0.5. AFM observation revealed that the grafted layers densely and homogeneously covered the silicon substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1332‐1343, 2005  相似文献   

2.
This work describes how selective patterning of hydrophobic and hydrophilic areas inside microchannels of microfluidic devices can be achieved by combining well-known chemical protocols and standard photolithography equipment (365 nm). Two techniques have been performed and compared. The first technique is based on the preparation of self-assembled monolayers of photocleavable organosilane and the second one on photoassisted grafting (365 nm) of self-assembled monolayers (SAMs) on a silicon or glass substrate. In the first case, we begin with monolayers carrying an o-nitrobenzyl function (hydrophobic area) that is photochemically cleaved, revealing a carboxylic acid group (hydrophilic area). The problem is that the energy necessary to cleave this monolayer is too high and the reaction time is more than 1 h with 50 mW/cm(2) irradiation flux. To overcome this practical disadvantage, we propose another approach that is based on the thiol-ene reaction with benzophenone as photoinitiator. In this approach, a monolayer of mercaptopropyltrimethoxysilane (MPTS) is prepared first. Subsequently, a hydrocarbon chain is photografted locally onto the thiol layer, forming a hydrophobic surface while the reminding unmodified thiol surface is oxidized into sulfonic acid (hydrophilic area). We demonstrated the feasibility of this approach and synthesized high-quality self-assembled monolayers by UV grafting with an irradiation time of 30 s at 365 nm (50 mW/cm(2)). The modified surfaces have been characterized by contact angle measurements, X-ray photoelectron spectroscopy (XPS), AFM, and multiple internal reflection infrared spectroscopy (MIR-FTIR). The difference in the contact angles on the hydrophilic and hydrophobic surfaces reached a remarkable 77 degrees. We have also demonstrated that this method is compatible with selective surface grafting inside microfluidic channels.  相似文献   

3.
Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.  相似文献   

4.
Nanostructured multilayers constituted by alternate metallic (gold) and organic (alkyldithiol) layers, and grafted onto glass or silicon substrates are prepared and analysed. Such complex layers could be of interest as a new type of surfaces but also as localized dissipative zones particularly in the field of adhesion science. The formation and the structure of these model systems are examined using a number of techniques such as atomic force microscopy (AFM), wetting analysis (contact angles), X‐ray photoelectron spectroscopy (XPS) and conductivity measurements. It is shown that, in terms of electrical conductivity, gold layers exhibit a percolation transition from an insulating granular structure to a conductive worm‐like structure at a threshold thickness of about 5 nm. XPS (and wettability) analyses clearly indicate that the fractional coverage of the gold surface is about 30% with alkyldithiol and that these molecules are either grafted in a stand‐up position or in the form of a loop. Moreover, a partial electrical connection between two successive gold layers is observed, confirming that the confined organic layer of alkyldithiol between them is too loosely organized to play the role of an insulating barrier. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, a hydrophilic silica plate exposed in air, and immersed in an aqueous solution was studied through atomic force microscopy (AFM) imaging in contact‐ and tapping‐mode operations. It was experimentally found that the tapping‐mode AFM images of the silica surface were different when it was immersed in an aqueous solution from those when it was exposed in air. The former showed fewer topographic features. However, the contact‐mode AFM images of the silica surface were almost uninfluenced by the medium in which the surface was placed. This phenomenon might be attributed to the existence of hydration layers near the silica surface in the aqueous solution. The layers are like a large sheet on the surface that hides the details, so that an AFM tip in the tapping mode can read only the hydration layer and therefore image only the rough outline of the surface. This result might suggest the existence of hydration layers near a hydrophilic surface immersed in water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
We have monitored deflection-distance curves with an atomic force microscope (AFM) in contact mode, with a silicon nitride tip, on chemically modified silicon wafers, in the air. The wafers were modified on their surface by grafting self-assembled monolayers (SAMs) of different functional groups such as methyl, ester, amine, or methyl fluoride. A chemically modified surface with a functionalized hydroxyl group was also considered. Qualitative analysis allowed us to compare adhesive forces versus chemical features and surface energy. The systematic calibration procedure of the AFM measurements was performed to produce quantitative data. Our results show that the experimentally determined adhesive force or thermodynamic work of adhesion increases linearly with the total surface energy determined with contact angles measured with different liquids. The influence of capillary condensation of atmospheric water vapor at the tip-sample interface on the measured forces is discussed. Quantitative assessment values were used to determine in situ the SAM-tip thermodynamic work of adhesion on a local scale, which have been found to be in good agreement with quoted values. Finally, the determination of the surface energy of the silicon wafer deduced from the thermodynamic work of adhesion is also proposed and compared with the theoretical value.  相似文献   

7.
MMA/DVB emulsion surface graft polymerization initiated by UV light   总被引:1,自引:0,他引:1  
Methyl methacrylate/1,2-divinylbenzene (MMA/DVB) in an opaque emulsion were successfully grafted onto the surface of polymeric substrate under the irradiation of UV light with benzophenone (BP) as a photoinitiator that was previously coated on the substrate surface. Monomer conversion, grafting efficiency, and grafting yields were determined by the gravimetric method. ATR-IR, AFM, and TEM were used to characterize the surface composition, to observe the topography of the grafted substrates, and to view inter-film colloid particles formed by cross-linking. The results reveal that, with the opaque MMA/DVB emulsion system and CPP film as substrate, the monomer conversion is in the range of 15-55%, the grafting efficiency is about 80%, the grafting yield reaches 5%, and the thickness of the graft layer can be controlled in the range 0.09-1.5 microm. Images of AFM show that the graft layer is piled up by nanoparticles (about 30-50 nm in diameter), which are linked together and tied to the substrate surface with covalent bonds. A possible model of surface graft polymerization including surface initiating, nucleation, and shish kebab growing is put forward to interpreting the above results.  相似文献   

8.
紫外光引发LDPE膜接枝含氟丙烯酸酯的研究   总被引:7,自引:0,他引:7  
通过紫外光引发表面接枝聚合反应的方法 ,把含氟丙烯酸酯单体R 5 6 1 0引到LDPE薄膜上 .对经丁酮抽提后的接枝膜进行FTIR、ESCA、SEM和DSC等表征 ,证实含氟聚合物以化学键的方式接枝在LDPE基体膜上 .在一定范围内 ,增加紫外光强、引发剂和单体浓度以及反应温度等均有利于提高接枝率 .经计算R 5 6 1 0的紫外光引发接枝聚合反应总活化能为 5 4 2kJ mol.接枝膜的接触角随着接枝率的提高逐步增大 ,直至趋于恒定 .作者提出接枝膜存在一个在接触角测定时影响基体膜与探测水滴相互作用过程的边界层 .当接枝率较低、接枝层厚度小于边界层临界厚度时 ,基体LDPE影响接触角的大小 ,但随着接枝率提高 ,接枝层逐渐变厚 ,氟聚合物层对接触角的贡献逐渐占优势 ,导致接触角随之增大 .当接枝率超过一定值以后 ,接枝层厚度超过边界层临界厚度 ,接枝层对接枝膜的接触角起全部贡献 ,接触角测定值随之稳定  相似文献   

9.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

10.
Redox-responsive poly(ferrocenylsilane) (PFS) polymer molecules were attached individually to gold surfaces for force spectroscopy experiments on the single molecule level. By grafting ethylenesulfide-functionalized PFS into the defects of preformed self-assembled monolayers (SAMs) of different omega-mercaptoalkanols on Au(111), the surface coverage of PFS macromolecules could be conveniently controlled. Atomic force microscopy (AFM), contact angle, as well as cyclic and differential pulse voltammetry measurements were carried out to characterize the morphology, wettability, and surface coverage of the grafted layers. The values of the PFS surface coverage were found to depend on the chain length of the omega-mercaptoalkanol molecules and on the concentration of the PFS solution but not on the insertion time or on the molar mass of PFS. The equilibrium surface coverages were successfully described by Langmuir adsorption isotherms. For low-surface coverage values (< 6.2 x 10(-4) chain/nm2), achieved by PFS insertion from very dilute solutions (8 x 10(-6) M) into long-chain SAMs, AFM and differential pulse voltammetry showed that surfaces exposing isolated individual polymer chains were obtained. The isolated PFS macromolecules were subjected to in situ AFM-based single molecule force spectroscopy (SMFS) measurements. The single chain elasticity of PFS in isopropanol (and ethanol) was fitted with the modified freely jointed chain (m-FJC) model. This procedure yielded a Kuhn segment length of 0.33 +/- 0.05 nm and a segment elasticity of 32 +/- 5 nN/nm.  相似文献   

11.
We report here on the fabrication and characterization of stable thin films of amorphous silica (SiO(x)) deposited on glass slides coated with a 5 nm adhesion layer of titanium and 50 nm of gold, using the plasma-enhanced chemical vapor deposition (PECVD) technique. The resulting surfaces were characterized using atomic force microscopy (AFM), ellipsometry, contact angle measurements, and surface plasmon resonance (SPR). AFM analysis indicates that homogeneous films of silica with low roughness were formed on the gold surface. The deposited silica films showed excellent stability in different solvents and in piranha solution. There was no significant variation in the thickness or in the SPR signal after these harsh treatments. The Au/SiO(x) interfaces were investigated for their potential applications as new surface plasmon resonance sensor chips. Silica films with thicknesses up to 40 nm allowed visualization of the surface plasmon effect, while thicker films resulted in the loss of the SPR characteristics. SPR allowed further the determination of the silica thickness and was compared to ellipsometric results. Chemical treatment of the SiO(x) film with piranha solution led to the generation of silanol surface groups that have been coupled with a trichlorosilane.  相似文献   

12.
The conformation of poly(styrene sulfonate) (PSS) layers physisorbed from 1 M NaCl is determined by force measurements and imaging on two length scales. With colloidal probe technique steric forces as predicted for neutral grafted brushes are observed. On decrease and increase of the NaCl concentration, the grafting density remains constant, yet the brush thickness swells and shrinks reversibly with the salt concentration with an exponent of -0.3. At low salt conditions, the brush length amounts to 30% of the contour length, a behavior known for polyelectrolyte brushes and attributed to the entropy of the counterions trapped in the brush. Between a PSS layer and a pure colloidal silica sphere, the same steric forces are observed, and additionally at large separations (beyond the range of the steric repulsion) an electrostatic force is found. A negatively charged AFM tip penetrates the brush--a repulsive electrostatic force between the tip and surface is found, and single chains can be imaged. Thus, with the nanometer-sized AFM tip, the flatly adsorbed fraction of the PSS chains is seen, whereas the micrometer-sized colloidal probe interacts with the fraction of the chains penetrating into solution.  相似文献   

13.
We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2.  相似文献   

14.
We have investigated the effect of the surface state and surface treatment of the pores of an inorganic substrate on the plasma‐grafting behavior of pore‐filling‐type organic/inorganic composite membranes. Shirasu porous glass (SPG) was used as the inorganic substrate, and methyl acrylate was used as the grafting monomer. The grafting rate increased as the density of silanol on the SPG substrate increased. This result suggests that radicals are generated mainly at the silanol groups on the pore surface by plasma irradiation. The SPG substrates were treated with silane coupling agents used to control the mass of organic material bonded to the pore surface. The thickness of the grafted layer became thinner as the mass of organic material bonded to the pore surface of SPG increased. This decrease in the thickness of the grafted layer could be explained by the decrease in the penetration depth of vacuum ultraviolet rays contained in plasma having a wavelength of less than 160 nm that generated radicals in the pores of the substrate. The thickness of the grafted layer inside the SPG substrates could be controlled through the control of the mass of organic material bonded to the pore surface of the SPG substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 846–856, 2006  相似文献   

15.
Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e., UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.  相似文献   

16.
Radiation-induced graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) mixture was carried out on polypropylene nonwoven fabric to develop a thermosensitive material and has been found to affect the thermal and physical characteristics of fabric. The grafted fabrics with different monomer ratios were characterized by thermal gravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), contact angle and atomic force microscopy (AFM). Results of FTIR clearly indicated that poly(acrylic acid) and poly(N-isopropyl acrylamide) were successfully grafted onto the membrane surface. TGA results showed that the thermal stability of PP fabric increased after grafting of NIPAAm/AA. The crystallinity values from DSC and XRD were found to decrease with increase in degree of grafting because of the addition of grafted chains within the noncrystalline region. The decrease in contact angles of the grafted fabric with an increase of the degree of grafting shows that PNIPAAm/PAA exists as the hydrophilic component. The increase in surface roughness after grafting was observed by AFM.  相似文献   

17.
Rosin polymer–grafted lignin composites were prepared via “grafting from” atom transfer radical polymerization (ATRP) with the aid of 2‐bromoisobutyryl ester‐modified lignin as macroinitiators. Three different monomers derived from dehydroabietic acid (DA) were used for execution of grafting from ATRP, while DA was separately attached onto lignin by a simple esterification reaction. Kinetic studies indicated controlled and “living” characteristics of all monomer polymerizations. Thermal studies indicated that rosin polymer–grafted lignin composites exhibited glass transition temperatures in a broad temperature range from ~20 to 100°C. The grafting of both DA and rosin polymers significantly enhanced hydrophobicity of lignin. Static contact angle measurement of water droplets showed ~90° for all these rosin modified lignin composites. X‐ray photoelectron spectroscopy demonstrated that the surface of rosin–lignin composites was dominated with chemical compositions originating from the hydrocarbon rich rosin moiety. The impartation of hydrophobicity of rosin into lignin provided excellent water resistance of this class of renewable polymers, as all rosin‐modified lignin composites showed water uptake below 1.0 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Silicon wafers have been silylated with VTMS (vinyltrimethoxysilane) and hydrolyzed. Subsequently, PVP (polyvinyl pyrrolidone) was grafted onto the silylated surface by two different techniques: the grafting-through (GT) and the grafting-onto techniques (GO). The measurement of contact angles along with the topography analysis by atomic force microscopy (AFM) has allowed monitoring the different stages of the process and the temporal evolution of polymer grafting. The results have demonstrated the feasibility of both methods of grafting but have shown that the GT method gives a higher density of polymer-grafted chains. The AFM technique in adequate liquid environments has been proven to permit the surface density of chains to be distinguished by both methods and to estimate the length of the resulting PVP chains.  相似文献   

19.
This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.  相似文献   

20.
Polymer layer growth by free radical graft polymerization (FRGP) and controlled nitroxide-mediated graft polymerization (NMGP) of polystyrene was achieved by atmospheric pressure hydrogen plasma surface activation of silicon. Kinetic polystyrene layer growth by atmospheric pressure plasma-induced FRGP (APPI-FRGP) exhibited a maximum surface-grafted layer thickness (125 A after 20 h) at an initial monomer concentration of [M] 0 = 2.62 M at 85 degrees C. Increasing both the reaction temperature ( T = 100 degrees C) and initial monomer concentration ([M] 0 = 4.36 M) led to an increased initial film growth rate but a reduced polymer layer thickness, due to uncontrolled thermal initiation and polymer grafting from solution. Controlled atmospheric pressure plasma-induced NMGP (APPI-NMGP), using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), exhibited a linear increase in grafted polystyrene layer growth with time due to controlled surface graft polymerization as well as reduced uncontrolled solution polymerization and polymer grafting, resulting in a polymer layer thickness of 285 A after 60 h at [TEMPO] = 10 mM, [M] 0 = 4.36 M, and T = 120 degrees C. Atomic force microscopy (AFM) surface analysis demonstrated that polystyrene-grafted surfaces created by APPI-NMGP exhibited a high surface density of spatially homogeneous polymer features with a low root-mean-square (RMS) surface roughness ( R rms = 0.36 nm), similar to that of the native silicon surface ( R rms = 0.21 nm). In contrast, polymer films created by APPI-FRGP at [M] 0 = 2.62 M demonstrated an increase in polymer film surface roughness observed at reaction temperatures of 85 degrees C ( R rms = 0.55 nm) and 100 degrees C ( R rms = 1.70 nm). The present study concluded that the current approach to APPI controlled radical polymerization may be used to achieve a grafted polymer layer with a lower surface roughness and a higher fractional coverage of surface-grafted polymers compared to both conventional FRGP and APPI-FRGP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号