首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

2.
The fracture toughness of blends of nylon‐6 with maleated ethylene–propylene rubber and maleated styrene/hydrogenated butadiene/styrene triblock copolymer was investigated with a single‐edge‐notched three‐point‐bending instrumented Dynatup test. The blends for which the rubber particle size was less than 0.7 μm fractured in a ductile manner over the whole range of ligament lengths, whereas the blends with particles larger than 0.7 μm showed a ductile‐to‐brittle transition with the ligament length. In this regime, ductile fracture was observed for specimens with short ligaments, whereas brittle fracture was seen for those with long ligaments. The ductile fracture behavior was analyzed with the essential‐work‐of‐fracture model, whereas linear elastic fracture mechanics techniques were used to analyze the brittle fracture behavior. The fact that the ductile fracture energy was larger for the blends with the styrene/hydrogenated butadiene/styrene triblock copolymer than for those with ethylene–propylene rubber was due to the larger dissipative energy density of the blends based on the styrene/hydrogenated butadiene/styrene triblock copolymer. Both the critical strain energy release rate (GIC) and the plane‐strain critical stress intensity factor (KIC) increased as the rubber particle size decreased for both blend systems. The GIC and KIC parameters had similar values, regardless of the rubber type, when the rubber particle size was fixed. The transition ligament length was near the size criterion for plane‐strain conditions for both blend systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1739–1758, 2004  相似文献   

3.
The miscibility of nylon‐6 with poly(4‐vinylphenol) (PVPh) or poly(1‐hydroxy‐2,6‐methylphenylene) (p‐Cl‐novolac) was studied with differential scanning calorimetry and small‐angle X‐ray scattering techniques. Both PVPh and p‐Cl‐novolac are miscible with nylon‐6 at the molecular level. The presence of the phenolic polymers affects the crystallization of nylon‐6 and suppresses its melting point. PVPh increases the long space order in crystalline nylon‐6 because it increases the thickness of the amorphous layers. In contrast, a small quantity of p‐Cl‐novolac tends to decrease the long space order. It seems that p‐Cl‐novolac distributed in the amorphous regions introduces more order in these regions and makes the amorphous layers thinner. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 841–850, 2001  相似文献   

4.
Blends of isotactic polypropylene and polyamide‐6/clay nanocomposites (iPP/NPA6) were prepared with an internal batch mixer. A high content of the β‐crystalline form of isotactic polypropylene (β‐iPP) was observed in the injection‐molded samples of the iPP/NPA6 blends, whereas the content of β‐iPP in the iPP/PA6 blends and the iPP/clay composite was low and similar to that of neat iPP. Quiescent melt crystallization was studied by means of wide‐angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscopy. We found that the significant β‐iPP is not formed during quiescent melt crystallization regardless of whether the sample used was the iPP/NPA6 blend or an NPA6 fiber/iPP composite. Further characterization of the injection‐molded iPP/NPA6 revealed a shear‐induced skin–core distribution of β‐iPP and the formation of β‐iPP in the iPP/NPA6 blends is related to the shear flow field during cavity‐filling. In the presence of clay, the deformation ability of the NPA6 domain is decreased, as evidenced by rheological and morphological studies. It is reasonable that the enhanced relative shear, caused by low deformability of the NPA6 domain in the iPP matrix, is responsible for β‐iPP formation in the iPP/NPA6 blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3428–3438, 2004  相似文献   

5.
The effects of pristine and amino‐functionalized multiwalled carbon nanotubes (MWNTs) on the crystallization behaviors of nylon‐6 were investigated by differential scanning calorimetry and X‐ray diffraction. The results indicate the presence of polymorphism in nylon‐6 and its composites, which is dependent on the MWNTs concentration and the cooling rate. More MWNTs and slow cooling from the melt favors the formation of α crystalline form. With the increase in cooling rates, the crystallinity of neat nylon‐6 decreases, and that of the composites decreases initially but increases afterward. Moreover, the degree of crystallinity of the composites is higher than neat nylon‐6 under high cooling rates, counter to what is observed under low cooling rates. The heterogeneous nucleation induced by MWNTs and the restricted mobility of polymer chains are considered as the main factors. Furthermore, addition of MWNTs increases the crystallization rate of α crystalline form but amino‐functionalization of MWNTs weakens this effect. The influence of thermal treatment on the crystalline structure of MWNTs/nylon‐6 composites is also discussed. A γ–α phase transition takes place at lower temperature for MWNTs/nylon‐6 composites than for nylon‐6. The annealing peaks of the composites annealed at 160 °C are higher than that of neat nylon‐6, and the highest annealing peak is obtained for amino‐functionalized MWNTs/nylon‐6 composites. This phenomenon is closely related to the different nucleation and recrystallization behaviors produced by various MWNTs in confined space. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1499–1512, 2006  相似文献   

6.
In this study, the specimens of low‐density polyethylene (LDPE) and blend polymers of LDPE and a random copolymer of ethylene and propylene were prepared by the blowing process and T‐die method. The differences in electrical breakdown properties and morphology between the specimens made by the two different methods were studied. It was found that the specimen made by the T‐die method had a higher electrical breakdown strength than the specimen made by the blowing process, except for the DC breakdown strength in some cases at 30 °C. The morphology of the specimens was investigated by means of the measurements of thermal shrinkage, infrared dichroism, and X‐ray diffraction. The specimen made by the T‐die method has a stronger orientation in both the crystalline and amorphous phases than the specimen made by the blowing process. The difference in morphology is supposed to be correlated with the difference in electrical breakdown properties between the specimens made by the two different methods. It was concluded that the electrical breakdown properties are strongly affected by the orientation of chains in the specimen. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1741–1748, 2001  相似文献   

7.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   

8.
The work demonstrated the microstructure and the relaxation behavior of flexible electroactive blends of poly(vinylidene fluoride) (PVDF)/hydrogenated nitrile rubber (HNBR) by small‐angle X‐ray scattering and dielectric relaxation spectroscopy. Very few studies have been done so far on this topic for crystalline/rubbery blends. Lamellar morphology was observed for both the PVDF and its blends. HNBR suppressed the mobility of PVDF above its melting temperature, as evident from lowering of crystallization temperature, due to physical interaction. The interaction was increased with HNBR content. However, after complete crystallization, HNBR segments were expelled out from the lamella, and crystal long period remained intact in all the blends. Interestingly, some HNBR segments remained in the amorphous part of PVDF which reduced the electron density contrast of its crystalline and amorphous region. When HNBR was crosslinked, the interaction was reduced, and consequently, the crystallization became faster and electron density contrast increased. From the microscopic study, polydispersed particles were observed within the crystalline lamella. Interfacial polarization (IP) relaxation of PVDF was absent in the blends due to physical interaction, whereas IP relaxation of HNBR shifted to a higher frequency. The shift was higher at higher HNBR content and decreased when HNBR was crosslinked. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 851–866  相似文献   

9.
In this work, dielectric spectroscopy was conducted on five commercial woven polypropylene‐based fabrics. Measurements of dielectric loss tangent, the effective relative dielectric permeability and ac electrical conductivity were performed over a wide range of temperature and frequency. The results in temperature range from 250 K to 355 K showed that the samples with lower value of volume fraction whose yarn is made from a short fiber have a lower value of the above mentioned dielectric parameters than the samples with bigger value of volume fraction and filament yarn along the weft and the warp lines. Based on the results gained from the measurements in the vacuum and ambient conditions, it can be concluded that the samples with a lower value of volume fraction, whose yarn is made from a short fiber, showed stability of dielectric properties in the measurement interval. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of introducing silver nanoparticles on the rheological properties and dynamic crystallization behavior of nylon‐6 was investigated. The nanocomposites showed slightly higher viscosity than pure nylon‐6 in the low‐frequency range even at an extremely low loading level of the silver particles (0.5–1.0 wt %). The nanoparticles had a more noticeable effect on the storage modulus than on the loss modulus of a nylon‐6 melt and reduced its loss tangent. They increased the crystallization temperature of nylon‐6 by about 14 °C and produced a sharper crystalline peak. The silver nanoparticles promoted the crystallization of nylon‐6, and their effect on the dynamic crystallization of nylon‐6 at 200 °C was more notable at a lower shear rate and at 190 °C at a higher frequency. Nylon‐6 produced large spherulitic crystals, but the nanocomposites showed a grainy structure. In addition, the silver nanoparticles reduced the fraction of the α‐form crystal but increased that of the γ‐form crystal. The nanocomposites crystallized at 190 °C showed a lower melting temperature than nylon‐6 by about 3 °C, whereas the nanocomposites crystallized at 200 °C showed almost the same melting temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 790–799, 2004  相似文献   

11.
Molecular transport of aromatic hydrocarbons through nylon/ethylene propylene rubber (EPR) blend has been investigated in the temperature range of 25 to 65 °C. The effect of blend ratio on the transport behavior was studied in detail. Nylon/EPR‐50/50 blend shows the lowest uptake among all the systems studied. This behavior is related to blend morphology, density, and crystallinity of the blend composition. The transport property was correlated with the extent of interfacial adhesion in the blends. The effects of temperature and penetrant size on the sorption behavior were examined. Thermodynamic and Arrhenius parameters were evaluated from the diffusion data. Theoretical and experimental diffusion results were compared. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2136–2153, 2000  相似文献   

12.
This study investigates the role played by two different interface agents on the basis of atactic polypropylene in the continuous/disperse phase polypropylene/polyamide‐6 (PP/PA6) system. The two agents used were obtained at the authors' laboratories from an atactic polypropylene byproduct derived from industrial polymerization reactors and consist of two grafted polymers containing either succinic anhydride (a‐PP‐SA) or both succinyl‐fluorescein and succinic anhydride grafted groups (a‐PP‐SF/SA). The role of these grafted polymers as compatibilizers in PP/PA6 polymer blends has been confirmed in previous investigations on the basis of their macroscopic behavior. This work investigates the thermal study of these blends where polypropylene acts as the polymer matrix and polyamide as the dispersed phase. Under isothermal conditions, thermal analysis agrees with the changes in the overall system behavior caused by the presence of the interface agents. These aspects were confirmed by polarized light microscopy that showed the morphology of the blends before and after modification with a‐PP‐SA or a‐PP‐SF/SA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1307–1315, 2002  相似文献   

13.
We studied the interactions of nylon‐6 with water by following the Fourier transform infrared spectra of a hydrated thin film during dehydration. Very small changes in the spectra caused by the interactions were clearly revealed by the application of spectral subtraction. The water was found to interact with amide groups to form hydrogen bonds with non‐hydrogen‐bonded or free C?O and NH groups in the amorphous portion in the first hydration sphere. This was deduced from an analysis of minus and plus peaks appearing around the absorptions of the NH stretching, amide I band, and amide II bands in the difference spectra between the spectra during dehydration and the one at the most dehydration. The interactions of the amide groups with water were significantly stronger than the hydrogen bond between CO and NH in the crystalline portion, according to the magnitude of the frequency shift of relevant bands. Water, as the interacting counterpart, showed a distorted OH stretching absorption with two close peaks at about 3450 cm?1. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1722–1729, 2003  相似文献   

14.
Nylon‐6‐b‐polyimide‐b‐nylon‐6 copolymers were prepared by first synthesizing a series of imide oligomers end‐capped with phenyl 4‐aminobenzoate. The oligomers were then used to activate the anionic polymerization of molten ϵ‐caprolactam. In the block copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120 °C to generate N‐acyllactam moieties, which activated the anionic polymerization. In essence, nylon‐6 chains grew from the oligomer chain ends. All of the block copolymers had higher moduli and tensile strengths than those of nylon‐6. However, their elongations at break were much lower. The thermal stability, chemical resistance, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide in the block copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4247–4257, 2000  相似文献   

15.
Miscible S‐SBR (solution styrene–butadiene copolymer)/BR (polybutadiene homopolymer) blends are used in multiple applications like modern passenger car tire treads. Despite their miscibility, there is a problem to predict tire performance due to dynamical heterogeneities present in the S‐SBR/BR blends. On the one hand, S‐SBR/BR blends have a thermorheologically complex behavior, which complicates the prediction of the temperature‐ and frequency‐dependence of material properties. On the other hand, due to differences in the polarity of the individual components, the extender oils used in the elastomeric compounds could distribute unequally within the blends, where little is known about how oils interact with the two polymers. In this work a combination of Differential Scanning Calorimetry, Dynamic Mechanical Analysis, and Broadband Dielectric Spectroscopy (BDS) is used to clarify: (i) the thermorheological complexity of S‐SBR/BR blends, (ii) the effect of the extender oil on the blend. The broad frequency operation of BDS allows for the analysis of the S‐SBR and BR component dynamics and the effect of the oil on each of them within an S‐SBR/BR (50/50) blend. Based on the discretization of individual component dynamics in the blend, conclusive remarks are made on the effect of the extender oil for either component in the blend. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 842–854  相似文献   

16.
Nylon-6/polystyrene (PS) blends were reactively compatibilized by addition of various anhydride functionalized polystyrenes. The morphology of the blends was examined using a scanning electron microscopy (SEM) technique. The particle size of the dispersed styrenic phase was about 3.2 μm for the uncompatibilized 8/2 Nylon-6/PS blend while those of the compatibilized blends were decreased by as much as two orders of magnitude depending on the amount and type of the functionalized polystyrene (FPS) added. Several low-molecular weight polystyrenes with terminal anhydride groups, prepared by two different functionalization methods, were examined. The effect of molecular weight on particle size reduction depended on the basis of comparison, mass of additive, or moles of anhydride units. A high-molecular weight random copolymer of styrene and maleic anhydride was most effective when compared on a mass basis. The increase in adhesion between the Nylon-6 and the styrenic phases caused by the in situ reaction was evaluated by a lap shear technique. The free polystyrene, Nylon-6, and Nylon-FPS copolymer formed were separated by solvent extraction technique using formic acid and toluene. The extent of coupling reaction between the functionalized polystyrenes and Nylon-6 ranged from 25 to 43%. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The molecular dynamics of poly(vinyl acetate), PVAc, and poly(hydroxy butyrate), PHB, as an amorphous/crystalline polymer blend has been investigated using broadband dielectric spectroscopy over wide ranges of frequency (10−2 to 105 Hz), temperature, and blend composition. Two dielectric relaxation processes were detected for pure PHB at high and low frequency ranges at a given constant temperature above the Tg. These two relaxation peaks are related to the α and α′ of the amorphous and rigid amorphous regions in the sample, respectively. The α′-relaxation process was found to be temperature and composition dependent and related to the constrained amorphous region located between adjacent lamellae inside the lamellar stacks. In addition, the α′-relaxation process behaves as a typical glass relaxation process, i.e., originated from the micro-Brownian cooperative reorientation of highly constraints polymeric segments. The α-relaxation process is related to the amorphous regions located between the lamellar crystals stacks. In the PHB/PVAc blends, only one α-relaxation process has been observed for all measured blends located in the temperature ranges between the Tg’s of the pure components. This last finding suggested that the relaxation processes of the two components are coupled together due to the small difference in the Tg’s (ΔTg = 35 °C) and the favorable thermodynamics interaction between the two polymer components and consequently less dynamic heterogeneity in the blends. The Tg’s of the blends measured by DSC were followed a linear behavior with composition indicating that the two components are miscible over the entire range of composition. The α′-relaxation process was also observed in the blends of rich PHB content up to 30 wt% PHB. The molecular dynamics of α and α′-relaxation processes were found to be greatly influenced by blending, i.e., the dielectric strength, the peak broadness, and the dielectric loss peak maximum were found to be composition dependent. The dielectric measurements also confirmed the slowing down of the crystallization process of PHB in the blends.  相似文献   

18.
Polybutadienes modified by a small number of 4-phenyl-1,2,4-triazoline-3,5-dione form thermoreversible networks via hydrogen bonding between the polar stickers. The molecular dynamics of systems with different contents of polar stickers are investigated by broadband dielectric spectroscopy in the frequency regime of 10–1–109 Hz. Unmodified polybutadiene shows two relaxation processes, the -relaxation which is correlated to the dynamic glass transition of the polybutadiene, and a -relaxation corresponding to a local relaxation of polybutadiene segments. In the polar functionalized systems, besides these two relaxations, an additional relaxation process (called *) is observed, which occurs at lower frequencies than the -process. While the -relaxation remains unaffected by the functionalization the cooperativity of the -relaxation increases by the formation of reversible junctions and slows down considerably. This indicates a decreased mobility of the polymer matrix. At the same time the dipole moment of relaxing units contributing to the -relaxation is increased by free phenyl urazole units. The * is assigned to the local complex dynamics resulting from the dissociation and formation of dimeric contacts. Hence, for this dynamic process, the absolute value of the dipole moment fluctuates with time and causes a dielectric absorption. This interpretation is in agreement with the hindered reptation model of Leibler, Rubinstein and Colby and simultaneous measurements of infrared dichroism and birefringence.  相似文献   

19.
The hydration of natural or synthetic macromolecules is of fundamental importance in our understanding of their structure and stability. Quantification of hydration water can promote the understanding to many complex biological mechanisms such as protein folding, as well as the dynamics and conformation of polymers. An approach to quantification of solvent water was developed by dielectric spectroscopy. Dielectric behaviors of PNIPAM microgels with different crosslink density distribution were measured in the range of 0.5–40 GHz and 15–50. An obvious relaxation process caused by free and bound water was found. Dielectric parameters of free and bound water show that the crosslink density distribution does not affect the volume phase transition temperature of microgels, but significantly influence the orientation dynamics of the solvent water. We found that the three kinds of microgel can be distinguished by the dielectric parameters of the bound water. In addition, the number of water in and outside microgel during the volume phase transition process was quantitatively calculated for the first time. This study provides the possibility for the quantification of water in complex biological process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1859–1864  相似文献   

20.
The compatibilizing effect of polypropylene (PP) grafted with hyperbranched polymers (PP–HBP) has been investigated in PP/polyamide‐6 (PA‐6) blends. Because of its high reactivity and diffusitivity, PP–HBP has been shown to be a more effective compatibilizer in decreasing the interfacial tension than the commonly used maleic anhydride–grafted polypropylene (PP–MAH). This article describes the influence of PP–HBP and PP–MAH on the interfacial tension between PP and PA‐6, as measured by the deformed drop‐retraction method (DDRM). Overall, PP–HBP yielded lower interfacial tension values between PP and PA‐6, which resulted in a finer particle size of the secondary phase. The time dependence of the interfacial tension can be monitored by DDRM, enabling evaluation of the diffusitivity and reactivity of the compatibilizer. A model based on particle coarsening has been developed to describe the time dependence of the interfacial tension. This model showed that the diffusitivity and reactivity for PP–HBP was higher than that of PP–MAH. Therefore, PP–HBP has strong potential as a compatibilizer in diffusitivity‐dependant processes such as film coextrusion and fusion bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2069–2077, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号