首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of metallic salts (M = Hg, Sb, and Te) with bis(triorganotin)oxide, (R3Sn)2O, where (R = C6H5, p‐CH3C6H4, and cyclo‐C6H11) at room temperature proceeded with the simultaneous cleavage of the Sn C and Sn O bonds, invariably yielding R2SnO along with other products. Thus the treatment of HgX2 (X = Cl, CN, SCN) with (R3Sn)2O resulted in the formation of polymeric diorganotin oxide R2SnO along with R3SnX and RHgX derivatives. The reaction of SbCl3 with (R3Sn)2O was found to give R2SnO, R3SnCl, and RSbCl2, whereas interaction with SbCl5 provided R2SnO, R2SnCl2, and R2SbCl3. Treatment of TeCl4 with (R3Sn)2O provided R2SnO, R3SnCl, and RTeCl3 at room temperature. At reflux temperature, reaction of PhTeCl3 with (R3Sn)2O yielded R2SnO, R3SnCl, and mixed diorganotellurium dichloride, RPhTeCl2. The course of reaction indicated the instability of Sn O Sn system proceeding via a four‐centered mechanism, providing organometallic compounds in profitable yield. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:278–283, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20547  相似文献   

2.
用T-jump/FTIR研究MnCP、NiCP和PbCP的快速热分解(英)   总被引:1,自引:0,他引:1  
0IntroductionCarbohydrazideisahydrazinederivativewithwhitecrystalofstrongreducingbehaviors.Becauseithasmanycoordinationatoms(fournitrogenatomsandoneoxygenatom),carbohydrazidecan,therefore,beusedasmultidentateligand.Itscoordinationcom鄄poundiswidelyusedint…  相似文献   

3.
Nitromethane is the only presently known organic solvent for highly reactive selenium trioxide (SeO3)4. The stability of the solutions is limited and the beginning of the reaction between both components depends significantly on concentration and temperature. The nitromethane solvate of cyclic triselenium heptoxide Se3O7 · CH3NO2 is the major solid product at the temperature 20–30°C and concentration range 3–20% SeO3. Crystal and molecular structure of this compound was determined by X-ray structure analysis and vibrational spectroscopy. The solvating molecule CH3NO2 is removable from Se3O7 · CH3NO2 in vacuo. If reaction temperature does not exceed 10°C, selenium pentoxide (Se2O5)n is formed instead of Se3O7 · CH3NO2. Dinitrosyl triselenate (NO)2Se3O10, nitrosyl hydrogendiselenate NOHSe2O7, nitrosyl hydrogenselenate NOHSeO4, nitrosyl hydrogenselenatoselenite NOHSe2O6 and selenium dioxide (SeO2)n were further identified in the solid reaction products. The selenic and/or oligoselenic acids remains in the nitromethane solution. CO2 and N2O3 were found as gaseous products.  相似文献   

4.
Using a mixture of NO + O2 as the oxidant enabled the direct selective oxidation of methane to dimethyl ether (DME) over Pt/Y2O3. The reaction was carried out in a fixed bed reactor at 0.1 MPa over a temperature range of 275–375 °C. During the activity tests, the only carbon‐containing products were DME and CO2. The DME productivity (μmol gcat?1 h?1) was comparable to oxygenate productivities reported in the literature for strong oxidants (N2O, H2O2, O3). The NO + O2 mixture formed NO2, which acted as the oxygen atom carrier for the ultimate oxidant O2. During the methane partial oxidation reaction, NO and NO2 were not reduced to N2. In situ FTIR showed the formation of surface nitrate species, which are considered to be key intermediate species for the selective oxidation.  相似文献   

5.
The reaction behavior of NaN3, AgN3, and Me3SiN3 towards FNO2, CINO2, NO2SbF6, and NO2BF4 was investigated. At -30°C or below in a solvent-free system sodium azide did not react with CINO2, NO2BF4, or NO2SbF6. Below -30°C silver azide did not react either with neat C1NO2. Treatment of Me3SiN3 with pure C1NO2 led to the formation of C1N3, N2O, and Me3SiOSiMe3. A mechanism for this reaction has been proposed. Pure chlorine azide was isolated by fractional condensation and identified by its low-temperature Raman spectrum (liquid state). The reaction of Cp2Ti(N3)2 with C1NO2 also yielded C1N3 as the only azide-containing reaction product. Treatment of FNO2 with NaN3 at temperatures as low as -78°C always ended in an explosion which was probably due to the formation of FN3 as one of the reaction products. The reaction of NO2SbF6 with NaN3 in liquid CO2 (-55°C· T· -35°C) as the solvent afforded a new azide species which was stable at low temperature in solution only and was investigated by means of low-temperature Raman spectroscopy. The obtained vibrational data give strong evidence for the presence of tetranitrogen dioxide, N4O2, which can be regarded as nitryl azide (NO2N3). The structure and vibrational frequencies of N4O2 were computed ab initio at correlated level (MP2/6-31 + G*). In liquid xenon (-100°C· T· -60°C) NaN3 did not react with NO2SbF6. A previous literature report on the preparation of N4O2 could not be established.  相似文献   

6.
During the reduction of NO2 by C3H6 in O2 over alumina-supported Au, Rh and Pt it was found that three parallel reactions take place,i.e., reduction of NO2 to N2 and N2O, partial decomposition of NO2 to NO and oxidation of C3H6 to CO and CO2. In the absence of C3H6, the NO2→NO+O2 reaction reaches a fast equilibrium on Rh and Pt but not on Au and γ-Al2O3. Addition of C3H6 to the NO2+O2 mixture leads to the formation of NO above equilibrium conversion levels.  相似文献   

7.
The cooperation of Zn and Co in the Zn-Co/HZSM-5 catalyst was investigated. NO was selectively reduced by CH4 to N2 in the presence of excess O2, and the catalytic activity depended on both the activation of CH4 and the adsorption properties of NOx. It was found that the addition of Zn could effectually heighten the selectivity of methane to NOx. The results of H2-TPR, NH3-TPD and XPS proved that addition of Zn into Co/HZSM-5 could inhibit the formation of bulk Co3O4 on the outer surface of the catalyst. Reducing the bulk Co3O4 would restrain the combustion of methane and improve the selectivity of methane to NOx, which was very consistent with the experimental results. MS-TPD results showed that Zn contributed the form of NO2 and strengthened its adsorption on the Co/HZSM-5 catalyst. So the reaction mechanism is proposed to occur via two successive elementary steps. First NO is oxidized to NO2 on the dispersed CoOx sites or Co2+ active sites; then NO2 is adsorbed on Zn2+ sites, and further reacts with methane on proton acid sites. The key step is the adsorption of NO2. Zn directly participates in the reaction by adsorption of NO2.  相似文献   

8.
Detailed height profiles of stratospheric nitric acid mixing ratios have been derived with a baloon borne chemical ionization mass spectrometer by applying several ion molecule reaction schemes, each associated to a specific and selective ion source. These ions (CO3, Cln, CF3O, and CF3OH2O) give rise to specific product ions (mainly CO3HNO3, NO3HCl, NO3HF, and CF3OHNO3) upon reaction with ambient nitric acid molecules. This paper reports on the instrumental details as well as on the results obtained during two balloon flights with the instrument. Within the accuracy of the measurements, the nitric acid height profiles obtained with the three different ion sources are in good agreement with one another as well as with literature data.  相似文献   

9.
Dissociation of nitromethane has been observed when a mixture of CF2HCl and CH3NO2 is irradiated using pulsed TEA CO2 laser at 9R (24) line (1081 cm-1), which is strongly absorbed by CF2HCl but not by CH3NO2. Under low laser fluence conditions, only nitromethane dissociates, whereas at high fluence CF2HCl also undergoes dissociation, showing that dissociation occurs via the vibrational energy transfer processes from the TEA CO2 laser-excited CF2HCl to CH3NO2. Time-resolved infrared fluorescence from vibrationally excited CF2HCl and CH3NO2 molecules as well as UV absorption of CF2 radicals are carried out to elucidate the dynamics of excitation/dissociation and the chemical reactions of the dissociation products.  相似文献   

10.
赵岷  刘朋军  常鹰飞  孙昊  苏忠民  王荣顺 《化学学报》2005,63(11):1013-1017
在QCISD(T)/6-311+G(d,p)//B3LYP/6-311+G(3df,3pd)水平上, 对CH3O与ClO双自由基反应进行了理论研究. 结果表明, 该反应共有三个反应通道, 产物分别为HOCl+CH2O, CH2O2+HCl和CH3Cl+O2(1Δ). 不论从动力学角度, 还是从热力学角度看, 形成产物HOCl+CH2O的通道均是最有利的, 因此为主要反应通道, 这与实验观察到的结果是一致的.  相似文献   

11.
The matrix isolation technique with Fourier transform infrared detection has been applied to determine the products of gaseous radical reactions. The gas phase reactions were carried out in a discharge flow system and about 1% of the gas mixture was deposited onto a low temperature target through a pinhole. A differential pumping scheme was employed to maintain the pressure of the cryosystem below 10?5 torr while that of the flow system was kept at about 2 torr. Species including HO2 (from the H+O2 reaction), ClO2 (from the Cl+O2 reaction) and ClO (from the Cl+O3 reaction) have been produced in the gas phase and were successfully trapped in matrices and detected with an FTIR spectrometer. In addition, both HCl and HOCl have been detected as the reaction products from the gaseous ClO+HO3 reaction. The production of HCl from the ClO+HO2 reaction may have a significant impact on catalytic ozone destruction in the atmosphere.  相似文献   

12.
赵娇娇  余运波  韩雪  贺泓 《催化学报》2013,34(7):1407-1417
分别以La2O2CO3, CeO2, ZrO2和Al2O3为载体, 采用浸渍法制备了Ni基重整催化剂, 并以正十二烷模拟车载燃油进行催化重整反应以同时制备小分子碳氢化合物(HCs)和H2, 考察了其在4wt%Ag/Al2O3上选择性催化还原(HC-SCR)氮氧化物(NOx)的性能. 采用N2吸附-脱附、X射线粉末衍射、H2程序升温还原和热重等手段对Ni基催化剂进行了表征. 结果表明, 随着重整催化剂氧化还原性能增强, 产物中H2浓度增加, 可参与SCR反应的HCs含量减少, 从而导致重整-SCR耦合体系上NOx净化活性温度窗口向低温移动, NOx最高转化率降低. Ni/ZrO2+Ag/Al2O3耦合体系中H2/HCs符合SCR反应所需的最优比例, 在柴油车典型排气温度范围内表现出良好的NOx净化能力. 同时, 在Ni/ZrO2+Ag/Al2O3耦合体系上考察了其燃油重整-SCR的活性稳定性. 结果显示, 重整催化剂的耐久性有待进一步提高.  相似文献   

13.
《Comptes Rendus Chimie》2014,17(7-8):672-680
Experimental studies on diesel soot oxidation under a wide range of conditions relevant for modern diesel engine exhaust and continuously regenerating particle trap were performed. Hence, reactivity tests were carried out in a fixed bed reactor for various temperatures and different concentrations of oxygen, NO2 and water (300–600 °C, 0–10% O2, 0–600 ppm NO2, 0–10% H2O). The soot oxidation rate was determined by measuring the concentration of CO and CO2 product gases. The parametric study shows that the overall oxidation process can be described by three parallel reactions: a direct C–NO2 reaction, a direct C–O2 reaction and a cooperative C–NO2–O2 reaction. C–NO2 and C–NO2–O2 are the main reactions for soot oxidation between 300 and 450 °C. Water vapour acts as a catalyst on the direct C–NO2 reaction. This catalytic effect decreases with the increase of temperature until 450 °C. Above 450 °C, the direct C–O2 reaction contributes to the global soot oxidation rate. Water vapour has also a catalytic effect on the direct C–O2 reaction between 450 °C and 600 °C. Above 600 °C, the direct C–O2 reaction is the only main reaction for soot oxidation. Taking into account the established reaction mechanism, a one-dimensional model of soot oxidation was proposed. The roles of NO2, O2 and H2O were considered and the kinetic constants were obtained. The suggested kinetic model may be useful for simulating the behaviour of a diesel particulate filter system during the regeneration process.  相似文献   

14.
The interactions of oxidized and reduced Co/-Al2O3 (4 wt % CoO) with H2, CH4, CO2, and O2 and their mixtures are studied in flow and pulse regimes using a setup involving a DSC-111 differential scanning calorimeter and a system for chromatographic analyses. It is shown that treatment with hydrogen at 700°C results in the partial reduction of cobalt oxide to Co. Methane poorly reacts with the oxidized catalyst but readily reacts with the reduced catalyst to form H2 and surface carbon. The initial surface carbon transforms into other forms, which block the cobalt surface to different extents and differ in the heats of reaction with CO2. Carbon dioxide may react with the surface carbon to form CO (rapidly) and with metallic Co to form CO and CoO (slowly). Thus, the main route of methane reforming with carbon dioxide on Co/-Al2O3 is the dissociative adsorption of CH4 to form surface carbon and H2 and the reaction of surface carbon with CO2 to form CO via the reverse Boudouard reaction.  相似文献   

15.
Investigation of the formation of complex reaction products in the gas-phase system O3/NO2/(Z)-2-butene by combination of linear reactors with IR. matrix and microwave Stark Spectroscopy is reported. Besides the polyatomic products observed earlier in the gas-phase ozonolysis of (Z)-2-butene, the following products were identified; N2O5, HNO3, HNO4, CH3NO2, CH3ONO, CH3COONO2 and CH3COO2NO2 (peroxyacetyl nitrate, PAN). Matrix IR. spectra of N2O5, HNO3. CH3COONO, CH3COONO2 required for reference purposes are presented. It is shown that PAN-formation occurs already in the absence of light. A reaction scheme is proposed for explanation of the observed complex NOx-containing products, which assumes methyldioxirane as a central intermediate. Particular reaction steps of the scheme will be discussed, including thermochemical estimates of reaction enthalpies.  相似文献   

16.
This paper describes how weakly bound adduct ions form when the precursor ions used in selected ion flow mass spectrometry, SIFT-MS, analyses, viz. H3O+, NO+ and O2+, associate with the major components of air and exhaled breath, N2, O2 and CO2. These adduct ions, which include H3O+N2, H3O+CO2, NO+CO2, O2+O2 and O2+CO2, are clearly seen when dry air containing 5% CO2 (typical of that in exhaled breath) is analysed using SIFT-MS. These adduct ions must not be misinterpreted as characteristic product ions of trace gases; if so, serious analytical errors can result. However, when exhaled breath is analysed these adduct ions are partly removed by ligand switching reactions with the abundant water molecules and the problems they represent are alleviated. But the small fractions of the adduct ions that remain in the SIFT-MS spectra, and especially when they are isobaric with genuine characteristic product ion of breath trace gases, can result in erroneous quantifications; such is the case for H3O+N2 interfering with breath ethanol analysis and H3O+CO2 with breath acetaldehyde analysis. However, these difficulties can be overcome when the isobaric adduct ions are properly recognised and excluded from the analyses; then these two important compounds can be properly quantified in breath. The presence of O2+CO2 in the product ion spectra interferes with the analysis of CS2 present at low levels in exhaled breath. It is likely that similar problems will occur as other trace compounds are detected in exhaled breath when consideration will have to be given to the possibility of overlapping between their characteristic product ions and ions produced by hitherto unknown reactions. Similar problems are evident in other systems; for example, H3O+CH4 adduct ions are observed in both SIFT-MS analyses of methane rich mixtures like biologically generated waste gases and in model planetary atmospheres.  相似文献   

17.
As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.  相似文献   

18.
Characteristics of metal oxide semiconductor sensors intended for measuring O3, NO x , Cl2, C1O2, and HCl microconcentrations were discussed. Specific features of detection of these microimpurities with semiconductor sensors were determined. The size of signal generated by sensors with WO3-, ZnO-, and In2O3-based sensing layers was examined in relation to the O3, NO x , Cl2, C1O2, and HCl concentration. The sensitivities exhibited by the semiconductor sensors with respect to target impurities make them suitable for measuring their maximum permissible concentrations in sanitary zones and for monitoring background ozone level in atmosphere. Examples of application of gas analyzers based on semiconductor sensors in determination of gas impurities in the open atmosphere were given.  相似文献   

19.
We have carried out laboratory measurements of gas-phase ion-molecule-reactions of several negative ion species with propionic, butyric, glyoxylic, pyruvic, and pinonic acids. A flow reactor operating at a temperature of 293 ± 3 K and total gas pressures of 1.5 hPa, 9 hPa, or 40 hPa were used. The negative reagent ion species investigated included CO3, CO3H2O, NO3, NO3H2O, NO2, NO2H2O, and O3. The reactions were found to proceed either via proton transfer, switching, or clustering. A new proton transfer channel leading to alkylperoxy carboxylate radicals (R−H(OO·)COO) was observed for propionic, butyric, and pinonic acids.  相似文献   

20.
The determination of oxygen by carrier gas hot extraction is the most popular method for oxygen analysis, but its application to high oxygen contents in oxides requires a critical look at the basic assumptions of the method. The process was studied for various oxides (Al2O3, Bi2O3, Cr2O3, Fe2O3, MoO3, NiO, TiO2, WO3, Y2O3, and ZrO2) using a modern analyser with IR-detectors for CO2 and CO. There was a difference specific to oxides that must be known to get the required analytical results with high precision and accuracy. High amounts of CO2 were formed particularly from Bi2O3, Fe2O3, MoO3, NiO, and WO3. The reaction rate can be controlled with delayed heating of the furnace, so that an oxide sample weight of up to 100 mg can be used. Received: 13 April 1999 / Revised: 24 June 1999 / Accepted: 28 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号