首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of rigid‐chain polymers containing different concentrations of laterally attached side rods was synthesized. These polymers exhibited liquid crystallinity even up to a maximum side rod concentration of 20 mol %. The crystallinity of the polymers, however, decreased with an increase in the side‐rod concentration. These polymers had lower dielectric constants compared with their parent polymers, that is, similar polymers, but without laterally attached side rods. A dielectric constant of 2.6 can be achieved by incorporating 10 mol % of laterally attached side rods, which is 0.5 lower than that of its parent polymer. The reduction of dielectric constant may be attributed to low crystallinity as well as the less dense packing structure of the polymers induced by the incorporation of laterally attached side rods. This series of polymers also had good thermal stability. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1288–1294, 2001  相似文献   

2.
A series of polynorbornenes (PNBEs) with 1,4‐bis[(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]benzene mesogens (n = 1–12, where n is the number of methylene units in the substituents of the mesogens) laterally attached to polymer backbones through a one‐carbon spacer were previously synthesized by the ring‐opening metathesis polymerization of the corresponding norbornene‐based monomers. Differential scanning calorimetric results showed that the first‐order transition temperatures exhibit an odd–even alternation, especially when PNBEs have lower values of n. PNBE (n = 8), similar to the previously studied PNBEs (n = 9–12), shows a smectic C (SC) phase at room temperature (Kim, Pugh, and Cheng, Macromolecules, 33, 8983, 2000.) According to one‐ and two‐dimensional wide‐angle X‐ray scattering experiments, PNBEs (n = 2–7) exhibit a nematic (N) phase with SC fluctuations, whereas for PNBE (n = 1), only an N phase is observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3029–3037, 2001  相似文献   

3.
Injection‐molded blends composed of two liquid‐crystalline polymers (LCPs) based on 60/40 p‐hydroxybenzoic acid/ethylene terephthalate (R3) and 73/27 p‐hydroxybenzoic acid/2,6‐hydroxynaphthoic acid (VA) copolymers, respectively, were obtained across the whole composition range. The two amorphous phases of the blends contained only slight amounts of the minority component, and the occurrence of some chemical reaction, mainly at high VA contents, was detected by Fourier transform infrared. Synergisms in the modulus of elasticity and in the tensile strength were seen in most of the blend compositions. The largest synergism was in the 50/50 R3/VA blend, which showed a modulus of elasticity 26% higher than that of either of the two components and a 17% positive deviation in the tensile strength with respect to the rule of mixtures. The different orientation of the LCPs in the blends explains the differences in the mechanical behavior. However, contrary to previous works on LCP blends and despite the almost complete immiscibility, the observed negative volume of mixing appears to be the main parameter that determines the synergistic mechanical behavior. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1022–1032, 2003  相似文献   

4.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

5.
In this article, we report the synthesis and characterization of a new end‐on side‐chain liquid crystalline polymer (SCLCP), poly[4‐(4′‐alkoxyphenyloxymethylene)styrene] [denoted as Poly(n‐POMS), where n is the carbon number of the alkyl tail, n = 2, 4, 6, 8, 12, 16], with the flexible rod‐like mesogenic side‐chain directly attached to the polymer backbone without flexible spacer. The polymer was obtained by using free radical polymerization. The chemical structures of Poly(n‐POMS) and the corresponding monomer were characterized using various techniques with satisfactory analysis data. A combination analysis of differential scanning calorimetry, polarized light microscopy, small angle X‐ray scattering, and wide‐angle X‐ray diffraction has been conducted to investigate the phase behavior of Poly(n‐POMS). Poly(2‐POMS), Poly(4‐POMS), and Poly(6‐POMS) are amorphous. Poly(8‐POMS) develops partially into the liquid crystal phase, and Poly(12‐POMS) and Poly(16‐POMS) self‐assembly into the smectic A (SmA) phase. Upon increasing temperature, the phase transition of Poly(16‐POMS) follows the sequence of SmA1 ? SmA2 ? isotropic (I), which may be attributed to the conformation isomerization of the flexible rod‐like mesogens. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The solution‐phase behavior of three main‐chain viologen polymers, which are composed of isomeric xylyl units and triflimide as a counterion, was studied in methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide as solvents microscopically under crossed polarizers. Each of them exhibited a lyotropic lamellar phase in both polar protic and aprotic solvents. Their C* for the formation of biphasic solutions (1–5 wt %) and concentrations (20–30 wt %) for the lyotropic solutions in methanol was much lower than those in polar aprotic solvents (20–71 and 60–81 wt %, respectively). Their high solubility, high C* for the formation of biphasic solutions, and high concentrations for the formation of lyotropic solutions in polar aprotic solvents were related to the significant reduction of strong ionic interactions between triflimide and 4,4′‐bipyridinium ions in each of these viologen polymers. They were the first examples of viologen polymers that exhibited a lyotropic phase in polar aprotic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2015–2024, 2002  相似文献   

7.
The effects of different surface modifications on the adhesion of copper to a liquid‐crystalline polymer (LCP) were investigated with X‐ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact‐angle measurements, and pull tests. High pull‐strength values were achieved when copper was sputter‐deposited onto plasma and reactive‐ion‐etching (RIE)‐pretreated LCP surfaces. The values were comparable to the reference pull strengths obtained with laminated copper on the LCP. The adhesion was relatively insensitive to the employed feed gas in the pretreatments. The surface characterizations revealed that for RIE and plasma treatments, the enhanced adhesion was attributable to the synergistic effects of the increased surface roughness and polar component of the surface free energy of the polymer. However, if the electroless copper deposition was performed on RIE‐ or plasma‐treated surfaces, very poor adhesion was measured. Good adhesion between the LCP substrate and electrolessly deposited copper was achieved only in the case of wet‐chemical surface roughening as a result of the creation of a sufficient number of mechanical interlocking sites, together with a significant loss of oxygen functionalities, on the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 623–636, 2003  相似文献   

8.
Novel liquid‐crystalline alternating conjugated copolymers [ P(P(6)CN‐alt‐Cz) and P(P(6)CN‐alt‐MeP) ] with phenylene and carbazolylene or phenylene with methyl substitution onto the main chain have been synthesized through palladium‐catalyzed Suzuki coupling reactions. The influence of the incorporation of carbazolylene and the substituted phenylene into the main chain on the thermal, mesomorphic, and luminescent properties has been investigated by Fourier transform infrared spectroscopy, thermogravimetry, differential scanning calorimetry, polarized optical microscopy, ultraviolet–visible spectroscopy, photoluminescence (PL), and cyclic voltammetry. These polymers show highly thermal stability, losing little of their weights when heated to 360 °C. The conjugated copolymers exhibit liquid crystallinity at elevated temperature. The existence of the chromophoric terphenyl core endows the copolymers with high PL and the polymer P(P(6)CN‐alt‐Cz containing carbazolylene unit can emit more pure blue light. All the copolymer films with low band gaps about 2.3–2.4 eV undergo reversible oxidation and reduction processes, significantly lower than the band gap of poly(p‐phenylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 434–442, 2010  相似文献   

9.
An Erratum has been published for this article in Journal of Polymer Science Part A: Polymer Chemistry (2003) 41(23) 3862 A new series of combined‐type, azobenzene‐based organophosphorus liquid‐crystalline polymers were synthesized, and their photoisomerization properties were studied. The prepared polymers contained azobenzene units as both the main‐chain and side‐chain mesogens. Various groups were substituted in the terminal of the side‐chain azobenzene mesogen, and the effects of the substituents were investigated. All the polymers were prepared at the ambient temperature by solution polycondensation with various 4‐substituted phenylazo‐4′‐phenyloxyhexylphosphorodichloridates and 4,4′‐bis(6‐hydroxyhexyloxy) azobenzene. The polymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H, 13C, and 31P NMR spectroscopy. Thermogravimetric analysis revealed that all the polymers had high char yields. The liquid‐crystalline behavior of the polymers was examined with hot‐stage optical polarizing microscopy, and all the polymers showed liquid‐crystalline properties. The formation of a mesophase was confirmed by differential scanning calorimetry (DSC). The DSC data suggested that mesophase stability was better for electron‐withdrawing substituents than for halogens and unsubstituted ones. Ultraviolet irradiation studies indicated that the time taken for the completion of photoisomerization depended on the dipolar moment, size, and donor–acceptor characteristics of the terminal substituents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3188–3196, 2003  相似文献   

10.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

11.
Polycarbonate (PC) was melt blended with small amount of liquid‐crystalline polymer (LCP) and various contents of glass beads (GB) having different diameters. The rheological measurements indicated that the GB addition increased the viscosity ratio and seemed unfavorable to the LCP fibrillation. However, the morphological observation showed that the LCP fibrillation was promoted by the GB addition and varied with the GB packing. With the increased GB packing by increasing the GB content and/or decreasing the GB diameter, LCP deformed from spheres and ellipsoids into stretched ellipsoids at lower shear rates and into long fibrils at higher shear rates. Although higher content of smaller GB jammed into the larger LCP droplets and inhibited the LCP fibrillation, very long LCP fibrils formed at higher shear rates at a high enough packing of GB. The relationship between GB packing and LCP fibrillation revealed two kinds of hydrodynamic effects of GB promoting the LCP fibrillation: at lower GB packing, the shear flow was enhanced by the high local shear between GB, in quantity; and for a high enough GB packing, the shear flow was changed, in quality, into elongational flow, which was more effective for the LCP fibrillation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1020–1030, 2006  相似文献   

12.
We examine some of the structural aspects that influence the mesomorphic behavior of liquid‐crystalline dimeric epoxy resins with imine groups in the mesogens. We synthesized two new series of monomers and compared them with previously synthesized monomers. Compared with previously studied series, the imine group in the new monomers is oriented differently with respect to the ether and ester groups linked to the end of the mesogenic unit. Our results confirmed the importance of polarization of the mesogenic groups and the presence of an ester group in the inner position in the formation of smectic mesophases. By curing with primary and tertiary amines, we demonstrate that these two requirements are necessary if liquid‐crystalline thermosets are to be obtained with different degrees of order. These studies were carried out with differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1465–1477, 2003  相似文献   

13.
New side‐chain liquid‐crystalline polymers containing both cholesteric and thermochromic side groups were synthesized. Their chemical structures were confirmed with elemental analyses and Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties and phase behavior were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the concentration of dye side groups on the phase behavior of the polymers was examined. The polymers showed smectic or cholesteric phases. Those polymers containing less than 20 mol % dye groups had good solubility, reversible phase transitions, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the isotropization temperature and mesophase temperature ranges decreased with an increasing concentration of dye groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3870–3878, 2004  相似文献   

14.
A series of fluorene‐based luminophores containing methacrylic end groups have been prepared and incorporated into uniaxially oriented liquid crystalline films by in situ photopolymerization. Various structural modifications on the 2‐(4‐cyanophenyl)fluorene core, which include alkyl chains at the 9‐position and elongation of the rigid core with one additional phenyl ring, have been investigated to generate emitters with adjusted liquid crystal compatibility, improved luminescence and dichroic properties. Polarized blue‐emitting films were produced that had an acceptable photostability, and it was found that the polarization emission was better for samples with low (5%) cross‐linker contents. Polarization of the luminescence was favored by the liquid crystalline properties of the luminophore. In addition, the detrimental effect of the alkyl substituent at the fluorene core on the mesomorphism and on the emission polarization can be overcome by lengthening the π‐system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4804–4817, 2007  相似文献   

15.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

16.
Thermotropic liquid‐crystalline (LC) semirigid polyesters based on three terphenyl analogues of 1,3,4‐thiadiazole (2,5‐diphenyl‐1,3,4‐thiadiazole)s (DPTD) linking undecamethyleneoxy chain at different substituted positions were synthesized from three disubstituted (4,4′‐, 3,4′‐, and 3,3′‐) dioxydiundecanols of DPTD and four diesters, and the relationships between polymer structures and LC and optical properties were investigated. DSC measurements, texture observations, and wide‐angle X‐ray analyses revealed that the polymers composed of DPTD moiety having a more linear molecular structure and 1,4‐phenylene unit or short aliphatic chain tend to exhibit LC smectic C and/or A phases. The following observations were made: (1) the emergence of smectic C and/or A phases in all the polymers on the basis of 4,4′‐disubstituted DPTD, (2) formation of enantiotropic smectic C and/or A phases in the polymers containing a 1,4‐phenylene unit in the main chain, (3) formation of a more stable smectic C phase in the polymers having a short aliphatic [(CH2)4] chain, and (4) a decrease of the mesomorphic property of the polyesters in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD. Solution and solid‐state ultraviolet–visible and photoluminescent spectra indicated that all the polyesters display maximum absorbances and blue emissions arising from the DPTD moiety, whose peak maxima were shifted to lower wavelengths in the order of 4,4′‐DPTD > 3,4′‐DPTD > 3,3′‐DPTD as well as the aforementioned LC property. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2676–2687, 2003  相似文献   

17.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
We synthesized novel epoxy‐terminated monomers on the basis of imine groups with spacers of different lengths between mesogens and reactive groups and examined their mesogenic properties. Their reaction with primary aromatic diamines and tertiary amines was carried out to investigate the formation of liquid‐crystalline thermosets. We explored how the curing conditions and the structures of the monomers and amines affected the formation of ordered networks. The special symmetry of a 1,5‐disubstituted naphthalene unit in the central core led to nematic mesophases in the pure liquid‐crystalline epoxy resins, and thermosets with locked nematic textures were obtained in all cases, regardless of the length of the spacer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1536–1544, 2003  相似文献   

19.
A hybrid composite consisting of rubber‐toughened nylon‐6,6, short glass fibers, and a thermotropic liquid‐crystalline polymers (LCP) was investigated by the LCP content being varied. The thermal behavior, morphology, and crystallization behavior due to hybridization were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and wide‐angle X‐ray scattering (WAXS). DSC results indicated that the crystallinity of the glass‐fiber‐reinforced toughened nylon‐6,6 was reduced by LCP addition, particularly 5–10 wt % LCP. DMA data showed that the miscibility between the blended components was maximum at the 5 wt % LCP composition, and the miscibility decreased with increasing LCP content. SEM photomicrographs revealed information consistent with the thermal behavior on miscibility. It was also observed that the 10 wt % LCP composition showed predominantly an amorphous character with FTIR and WAXS. WAXS results indicated that LCP hybridization increased the interplanar spacing of the hydrogen‐bonded sheets of the nylon crystals rather than the spacing between the hydrogen‐bonded chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 549–559, 2003  相似文献   

20.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号