首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The oxygen evolution reaction (OER) is a sluggish electrocatalytic reaction in solid oxide electrolysis cells (SOECs) at high temperatures (600–850 °C). Perovskite oxide has been widely investigated for catalyzing the OER; however, the formation of cation‐enriched secondary phases at the oxide/oxide interface blocks the active sites and decreases OER performance. Herein, we show that the Au/yttria‐stabilized zirconia (YSZ) interface possesses much higher OER activity than the lanthanum strontium manganite/YSZ anode. Electrochemical characterization and density functional theory calculations suggest that the Au/YSZ interface provides a favorable path for OER by triggering interfacial oxygen spillover from the YSZ to the Au surface. In situ X‐ray photoelectron spectroscopy results confirm the existence of spillover oxygen on the Au surface. This study demonstrates that the Au/YSZ interface possesses excellent catalytic activity for OER at high temperatures in SOECs.  相似文献   

2.
Adhesion of soft and hard tissues to yttria‐stabilized zirconia (YSZ) has been reported, despite its chemical inertness. To investigate the underlying mechanism of adhesion of hard and soft tissues to YSZ in dental implants, YSZ disks with (100), (110), and (111) crystalline planes were immersed in water for 60 days and in Hanks solution for 7 days, and the changes in the surface chemical states were characterized using X‐ray photoelectron spectroscopy. After immersion in water for 60 days, the concentration of hydroxyl groups on the YSZ surface increased. Therefore, the surface of YSZ was hydrated during immersion in water. In addition, phosphate groups were formed on the surface of YSZ immersed in Hanks solution. We conclude that the formation of phosphate on the YSZ surface in physiological conditions can promote reaction with the surrounding tissues.  相似文献   

3.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

4.
Microstructure of the double‐layered ceramic thermal barrier coatings of lanthanum zirconate (LZ) and yttria‐stabilized zirconia (YSZ) with bond coat on Ni‐based superalloy deposited by electron beam evaporation process has been studied. Two sets of combination of LZ and YSZ were deposited: one LZ over YSZ and the other YSZ over LZ. The interfaces of each layer were studied and were found to be sharp; however, some diffusion of elements from below layer was observed. The detailed selected area diffraction of the phases was carried out from the coating cross‐section specimens. The LZ layer was mostly found to be amorphous, and fine columnar growth was observed. The YSZ layer over LZ showed two different crystal structures at interface and at the top surface, which were cubic and tetragonal, respectively. The YSZ layers showed clear columnar grains with feather‐like intercalated structure Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Mesoporous yttria stabilized zirconia (YSZ) membranes can be used as supports for ultrathin dense ceramic or metallic membranes, and for ultrafiltration (UF) applications in harsh environments. This paper reports synthesis and characterization of sol-gel derived UF YSZ membranes. 0.25 M zirconia sol was prepared by hydrolysis and condensation of zirconium n-propoxide. A solution-sol mixing method was used to dope 8 mol% yttria in zirconia. Supported YSZ membranes were prepared by dip-coating the yttrium doped zirconia sol on the porous α-alumina substrate, followed by drying and calcining under controlled conditions. The membranes prepared in this study are of cubic fluorite phase. Helium permeation experiments show that the supported membranes are pin-hole (or crack) free. The 5 time dip-coated membrane determined by SEM micrograph is about 3.5 μm in thickness, with an average pore diameter of 3 nm.  相似文献   

6.
We present an atomistic simulation study on the size dependence of dopant distribution and the influence of nanoscale film thickness on carrier transport properties of the model oxide-ion conductor yttria stabilized zirconia (YSZ). Simulated amorphization and recrystallization approach was utilized to generate YSZ films with varying thicknesses (3-9 nm) on insulating MgO substrates. The atomic trajectories generated in the molecular dynamics simulations are used to study the structural evolution of the YSZ thin films and correlate the resulting microstructure with ionic transport properties at the nanoscale. The interfacial conductivity increases by 2 orders of magnitude as the YSZ film size decreases from 9 to 3 nm owing to a decrease in activation energy barrier from 0.54 to 0.35 eV in the 1200-2000 K temperature range. Analysis of dopant distribution indicates surface enrichment, the extent of which depends on the film thickness. The mechanisms of oxygen conductivity for the various film thicknesses at the nanoscale are discussed in detail and comparisons with experimental and other modeling studies are presented where possible. The study offers insights into mesoscopic ion conduction mechanisms in low-dimensional solid oxide electrolytes.  相似文献   

7.
The surface of ceramic electrolyte ZrO2 + 9 mol % Y2O3, hereinafter referred to as YSZ (abbreviated yttria stabilized zirconia), was modified with 0.1 to 0.2 μm oxide films of ZrO2, Y2O3, and YSZ (same composition as substrate) by dip coating in alcohol solutions of the relevant salts and further annealing. The results of scanning electronic microscopy and X-ray diffraction evidence epitaxial film growth. By means of impedance spectroscopy at the temperatures of 500 to 600°C, the effect of YZS electrolyte surface modification with ZrO2, Y2O3, and YSZ films to the polarization resistance of silver electrode was studied.  相似文献   

8.
A novel apparatus is described that does not only allow a very wide range of oxygen concentrations to be tuned in and gauged but also facilitates a direct observation of ongoing reactions within. It is principally built up of tubular lambda‐probes made of yttria stabilized zirconia (YSZ) and resembles a closed loop installation, enabling a total control of the inside atmosphere. Long term reactions inside the installation may be observed optically. First results of observed reactions are shown.  相似文献   

9.
A technique for formation of electrolyte thin films with the thickness of 6–10 μm of zirconia stabilized by yttria (YSZ) is developed on the basis of the method of chemical deposition from the vapor phase of organometallic compounds (MOCVD). Planar electrochemical cells based on film electrolyte with a supporting anode with the working surface area of 12 cm2 were manufactured. A solid-oxide fuel cell (SOFC) based on two fuel cells was developed and its life cycle tests at reduced operating temperatures (<800°C) were carried out for 400 h. The maximum power density reached in the SOFC tests was 316 mW/cm2.  相似文献   

10.
Yttrium‐stabilized zirconia (YSZ) has been extensively studied as an electrolyte material for solid oxide fuel cells (SOFC) but its performance in heterogeneous catalysis is also the object of a growing number of publications. In both applications, oxygen activation on the YSZ surface remains the step that hinders utilization at moderate temperature. It was demonstrated by oxygen isotope exchange that a dual catalyst bed system consisting of two successive LaMnO3 and YSZ beds without intimate contact drastically enhances oxygen activation on the YSZ surface at 698 K. It can be concluded that LaMnO3 activates the triplet ground‐state of molecular oxygen into a low‐lying singlet state, thereby facilitating the activation of the O2 molecule on the YSZ oxygen vacancy sites. This phenomenon is shown to improve the catalytic activity of the LaMnO3‐Pd/YSZ system for the partial oxidation of methane.  相似文献   

11.
The diffusion of all stable lanthanides was measured both in calcia stabilized zirconia (CSZ) and in yttria stabilized zirconia (YSZ) in the temperature range between 1,286 and 1,600 degrees C. The lanthanide diffusion coefficients obtained increase with increasing ionic radius. The experimental activation enthalpy of diffusion is near 6 eV for CSZ and between 4 and 5 eV for YSZ and is not strongly affected by the type of lanthanide. The results were correlated with defect energy calculations of the lanthanide diffusion enthalpy using the Mott-Littleton approach. An association enthalpy of cation vacancies with oxygen vacancies of about 1 eV (96 kJ/mol) was deduced in the case of CSZ, while there is no association in the case of YSZ. Furthermore, the change in diffusion coefficients can be correlated to the interaction parameter for the interaction between the lanthanide oxide with zirconia: The higher the interaction parameter, the higher the lanthanide diffusion coefficient.  相似文献   

12.
High-purity uniform powders of zirconia-based solid electrolytes stabilized with yttria (4 and 8 mol %) are synthesized by co-precipitation with subsequent annealing at different temperatures. The obtained powders were studied using X-ray analysis and transmission electron microscopy; the specific surface area was measured by nitrogen adsorption. The stabilized zirconia powder sintering was studied over temperature range from 1000 to 1600°C. The ionic conductivity of samples containing 8 mol % of yttria was 0.06–0.07 S/сm, that is comparable with that obtained with commercial solid electrolytes.  相似文献   

13.
An experimental method is presented that allows to control the morphology of sol–gel grown epitaxial thin films. Thin films of yttria stabilized zirconia (YSZ) have been grown on two c-cut sapphire substrates by sol–gel dip-coating and epitaxial nano-islands have been formed by high temperature thermal treatment. Atomic force microscopy observations and X-ray diffraction reciprocal space mapping were used to investigate the effects of a step-like structure of the wafer surface on the morphology and on the out-of-plane orientation of epitaxial nano-islands. In all cases investigated the (002) planes of YSZ remained parallel to the (0001) planes of sapphire, but tilted by an amount depending on both the out-of-plane lattice mismatch and miscut angle.  相似文献   

14.
Recently, there have been efforts to use clean and renewable energy because of finite fossil fuels and environmental problems. Owing to the site‐specific and weather‐dependent characteristics of the renewable energy supply, solid oxide electrolysis cells (SOECs) have received considerable attention to store energy as hydrogen. Conventional SOECs use Ni‐YSZ (yttria‐stabilized zirconia) and LSM (strontium‐doped lanthanum manganites)‐YSZ as electrodes. These electrodes, however, suffer from redox‐instability and coarsening of the Ni electrode along with delamination of the LSM electrode during steam electrolysis. In this study, we successfully design and fabricate highly efficient SOECs using layered perovskites, PrBaMn2O5+δ (PBM) and PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF50), as both electrodes for the first time. The SOEC with layered perovskites as both‐side electrodes shows outstanding performance, reversible cycling, and remarkable stability over 600 hours.  相似文献   

15.
This contribution aims at evaluating different synthesis procedures leading to zirconia‐based aerogels. A series of undoped and yttrium‐doped zirconia aerogels have been prepared via hydrolysis and condensation reaction of different alkoxy‐ and different inorganic salt‐based precursors followed by supercritical drying. Well‐established but deleterious zirconium n‐propoxide (TPOZ) or zirconium n‐butoxide (TBOZ) were used as metal precursors in combination with acids like nitric acid and acetic acid as auxiliary agent for the generation of non‐yttrium stabilized zirconia aerogels. Yttrium‐stabilized zirconia aerogels as well as pure zirconia aerogels were obtained by the salt route starting from ZrCl4 and crosslinking agents like propylene oxide or acetylacetone. The characteristics of the products were analyzed by nitrogen adsorption measurements, electron microscopy, and X‐ray scattering. It turned out that with respect to all relevant properties of the aerogels as well as the practicability of the synthesis procedures, approaches based on inexpensive non‐toxic salt precursors are the methods of choice. The salt‐based approaches allow not only for low‐cost, easy‐to‐handle synthesis procedures with realizable gelation times of less than 60 seconds, but also delivered the products with the highest surface area (449 m2 g?1 for ZrCl4) within this series of syntheses.  相似文献   

16.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

17.
Understanding nanoparticle‐formation reactions requires multi‐technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small‐angle X‐ray scattering (SAXS)/wide‐angle X‐ray scattering (WAXS)/total‐scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria‐stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub‐nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit‐cell dimensions. At yttria‐doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time‐resolved nanoparticle size distributions are calculated based on whole‐powder‐pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle‐size distributions occur. In situ total scattering provides structural insight into the sub‐nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six‐coordinated zirconium atoms in the initial amorphous clusters to eight‐coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration.  相似文献   

18.
薄膜型中温固体氧化物燃料电池 (SOFC)研制及性能考察   总被引:12,自引:0,他引:12  
用一种廉价的湿化学方法 ,在Ni_YSZ阳极基膜上制备出致密的YttriaStabilizedZirconia(YSZ)薄膜 .薄膜的厚度约为 10 μm ,致密均匀 ,无裂纹等缺陷 .以Ni_YSZ阳极基膜 ,YSZ薄膜和锶掺杂锰酸镧阴极 (LSM )组装的SOFC单电池 ,在 80 0℃下功率密度达 0 1W /cm2 .研究分析表明 ,YSZ薄膜的IR降 (包括电极 /YSZ薄膜的接触电阻 )较小 ,不是影响电池性能的主要因素 ,大的阳极过电位是影响电池性能的主要因素 .  相似文献   

19.
Powders of stabilized ZrO2–8 mol% Y2O3 (YSZ) have been obtained by mechanical milling in zirconia vials. The samples were characterized by X-ray diffraction (XRD). Positron annihilation lifetime (PALS) measurements were performed to investigate the lattice defects originated by the incorporation of yttria and those mechanically induced. The XRD results indicate the formation of tetragonal YSZ solid solution. PALS results indicate that positron trapping occurs at different kinds of defects such as vacancy-like defects, grain boundary and associated defects.  相似文献   

20.
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f.for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures.Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared.The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号