首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Electrical and mechanical property tests have been used to examine the changes in the carbon black network structure that occur in a filled elastomer at large strains in tension and compression. These changes have been examined both in materials that have no previous loading history and in test pieces that have been subjected to a specific known prestrain. When a previously unstrained, filled elastomer specimen is stretched to moderate extensions, the electrical resistivity increases. This is ascribed to the breakdown of the carbon black network structure. At higher tensile extensions, the resistivity decreases. This reduction in the electrical resistivity is attributed to the alignment of the shaped carbon black aggregates under strain. During unloading, the resistivity behavior is different from that during loading, with the final unloaded electrical resistivity being significantly higher than that measured in the unstrained elastomer. This dramatic change in the electrical properties after unloading is in marked contrast to the relatively modest changes observed in the mechanical behavior. After the first cycle, the electrical behavior becomes much more reversible, and this indicates that the bulk of the damage experienced by the carbon black network is developed during the first cycle. After unloading from a large strain, the electrical anisotropy is small, whereas the mechanical anisotropy is more marked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2079–2089, 2003  相似文献   

2.
The linear and nonlinear melt viscoelastic properties for a series of carbon black‐filled polymer composites were studied. Complementary tapping‐mode atomic force microscopy (AFM) studies were used to examine the dispersion and structural correlations of the filler particles in these composites. The low‐frequency dependence of the linear viscoelastic moduli gradually changes from liquidlike behavior for the unfilled polymer to pseudosolid character for composites with more than 9 vol % carbon black filler. The plateau modulus, inferred from the linear viscoelastic response, exhibits a somewhat discontinuous change at about 9 vol % filler. On the basis of the linear viscoelastic response, we postulate that the carbon black filler forms a continuous percolated network structure beyond 9 vol % filler, considerably lower than that expected from theoretical calculations for overlapping spheres and ellipsoids. We suggest that the lower threshold for percolation is due to the polymer mediation of the filler structure, resulting from the low functionality of the polymer and, consequently, few strong polymer–filler interactions, allowing for long loops and tails that can either bridge filler particles or entangle with one another. Furthermore, the strain amplitude for the transition from linear behavior to nonlinear behavior of the modulus for the composites with greater than 9 vol % filler is independent of frequency, and this critical strain amplitude decreases with increasing filler concentration. Complementary AFM measurements suggest a well‐dispersed carbon black structure with the nearest neighbor distance showing a discontinuous decrease at about 9 vol % filler, again consistent with the formation of a filler network structure beyond 9 vol % carbon black. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 256–275, 2001  相似文献   

3.
In this work the effect of swelling and temperature on the resistivity of highly carbon black filled elastomers under strain is investigated. This work shows that swelling, even to a modest extent of less than 10%, causes a marked increase in the electrical resistivity. The effect of a linear expansion due to swelling is much more marked than an equivalent linear tensile extension on the electrical resistivity. The increase in electrical resistivity with swelling is also much greater than the increase due to a reduction in the volume fraction of the carbon black alone. The increase in resistivity depends somewhat upon the chemical nature of the swelling agent. There is a relatively small effect of temperature induced volume change on resistivity, contrasting markedly with the large effect of a volume increase due to swelling. These observations suggest that on swelling there is a preferential migration of the solvent to the rubber/filler interfaces. This will push the carbon black aggregates apart and lead to a dramatic increase in the resistivity across the interface. There are also indications that at elevated temperatures the filler/rubber interactions are reduced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2161–2167, 2004  相似文献   

4.
Metallocene catalyst based polyethylene‐co‐7‐octenyldimethyl phenyl silane (PE/Si? Ph ) and its post‐treated functional forms PE/Si? X ( X = Cl , F , OCH3 , OCH2CH3 ) were used as additives in PE/ATH composites. The impact strength of the composites was significantly increased after a small addition (0.5–3.0 wt %) of the functionalized form of the copolymer (PE/Si? X ). The thermal study of the composites gave us more information about the additive's behavior at the filler/matrix interphase and correlation to the mechanical properties was found. According to this thermal data, the original untreated form of PE/Si? Ph also seemed to interact weakly with the ATH‐filler particles, which was seen in an altered interphase at the filler/matrix boundary layer. The interaction was not strong enough to improve the impact strength of composites but an increase was observed in some other mechanical properties (tensile stress, yield strain). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5597–5608, 2005  相似文献   

5.
The crystalline structure and fibrillar texture of nylon‐6 fibers filled with nanosized particles were investigated using wide‐angle and small‐angle X‐ray scattering. As‐spun fibers filled with organic nanoparticles consisting of aromatic polyamide‐like hyperbranched molecules with amine‐terminating groups exhibited strong modification of both the molecular orientation and the crystalline structure compared with that of unfilled spun fibers. Montmorillonite‐filled fibers mainly exhibited orientation improvement. The differences are discussed in terms of the rheological and nucleating effects during spinning. Drawing at 140 °C involves structural changes that resulted in the three kinds of fibers having a similar crystalline form and molecular orientation. In parallel, after significant strain‐induced changes, the microfibrillar texture of the various fibers displayed subtle differences at the ultimate stage of drawing. The changes in the fibril long period and fibril radius as a function of draw ratio are discussed in terms of the two sequential deformation processes of microfibril stretching and microfibril slipping. The occurrence of interfibrillar strain‐induced cavitation is discussed in relation to the nature of the interactions between the filler and the nylon‐6 matrix. And, finally, the mechanical properties are discussed in relation to the filler–matrix interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3876–3892, 2004  相似文献   

6.
Both linear and nonlinear viscoelastic properties of ionic polymer composites reinforced by soy protein isolate (SPI) were studied. Viscoelastic properties were related to the aggregate structure of fillers. The aggregate structure of SPI is consisted of submicron size of globule protein particles that form an open aggregate structure. SPI and carbon black (CB) aggregates characterized by scanning electron microscope and particle size analyzer indicate that CB aggregates have a smaller primary particle and aggregate size than SPI aggregates, but the SPI composites have a slightly greater elastic modulus in the linear viscoelastic region than the CB composites. The composite containing 3–40 wt % of SPI has a transition in the shear elastic modulus between 6 and 8 vol % filler, indicating a percolation threshold. CB composites also showed a modulus transition at <6 vol %. The change of fractional free volume with filler concentration as estimated from WLF fit of frequency shift factor also supports the existence of a percolation threshold. Nonlinear viscoelastic properties of filler, matrix, and composites suggested that the filler‐immobilized rubber network generated a G′ maximum in the modulus‐strain curves and the SPI formed a stronger filler network than the CB in these composites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3503–3518, 2005  相似文献   

7.
The linear modulus, swelling behavior, and high strain response of a set of well-characterized model triblock gels were investigated to understand the effect of homopolymer solubilized within the micelle core on gel structure and mechanical properties. Structural parameters were obtained from small-angle X-ray scattering (SAXS) as well as from self-consistent field theory (SCFT) calculations. Experimental results are compared with Neo-Hookean and exponentially strain hardening models for gel behavior and rigid filler effects are discussed. The main conclusion is that the addition of homopolymer to the micelle core increases the chain stretching in both the core and coronal blocks. The total extension of a chain for a given external load is fixed by its length; however, the initial prestretch imparted to the chain due to micellization changes with the size of the micelle core and can greatly reduce the amount of extension observed for a given external force. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1395–1408, 2010  相似文献   

8.
Dynamic properties such as shear modulus, loss modulus, and loss factor were obtained at a low strain amplitude over a wide range of frequencies and temperatures on vulcanizates filled with carbon black, silica, and carbon–silica dual‐phase filler. The data were shifted along the frequency scale. Instead of a single smooth master curve, a pseudomaster curve with a feather‐like structure is obtained. This effect is especially pronounced for the loss factor. Multiple factors may be responsible for this. Among others, filler networking and polymer–filler interaction may play a dominant role. The effect of the carbon–silica dual‐phase filler on the overall dynamic properties of the vulcanizates is similar to that of silica. Their tan δ values are much lower at lower frequencies and are relatively higher at higher frequencies. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1240–1249, 2000  相似文献   

9.
The stress‐strain response of low‐crystallinity ethylene‐octene (EO) and ethylene‐styrene (ES) copolymers with 7–20 mol % comonomer was compared over a temperature range that spanned the glass‐transition and crystal melting regions. Above the onset temperature of the glass transition, the copolymers exhibited elastomeric behavior with low initial modulus, uniform deformation to high strains, and high recovery after the stress was released. In the glass‐transition range, an initial low‐stress elastomeric response was followed by a distinct “bump” in the stress‐strain curve. On the basis of the temperature and rate dependence of the stress‐strain curve, local strain‐rate measurements, local temperature changes, and recovery characteristics, the “bump” was identified as high strain yielding. Hence, the stress‐strain curve sequentially exhibited the features of elastomeric and plastic deformation. Following high strain yielding, strain hardening dramatically increased the fracture strength. This behavior was defined as elastomeric‐plastic. Elastomeric‐plastic behavior in the broad glass‐transition range constituted a gradual transition from elastomeric behavior at higher temperatures to low‐temperature plastic behavior with high modulus and macroscopic necking. Because of the lower glass‐transition temperature of EO, ?40 °C as compared with ?10 °C for ES, the onset of elastomeric‐plastic behavior occurred at a significantly lower temperature. The concept of a network of flexible chains with fringed micellar crystals serving as the multifunctional junctions that provides the structural basis for elastomeric behavior of low‐crystallinity ethylene copolymers was extended to elastomeric‐plastic behavior by considering a network with a fraction of rigid, glassy chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 142–152, 2002  相似文献   

10.
We investigated the uniaxial deformation behavior of crosslinked low‐density polyethylene in partially and substantially molten states using a real‐time true stress–strain birefringence system. The stress–birefringence behavior exhibits a multiregime behavior during stretching and holding process. The details of this regime behavior are primarily governed by the degree of unmelted crystallinity as it has a dominant role in the long‐range structural connectivity. When the long‐range physical connectivity is present, a three‐regime nonlinear stress–optical behavior was observed. When the long‐range connectivity is substantially eliminated at higher temperatures, the regime I behavior disappears. Structural studies including cooling process reveal that the lower the proportion of molten material during stretching, the higher the concentration of fibrillar structure and the shorter are the lengths of the kebabs that exhibit twisted lamellae after solidification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1825–1841, 2005  相似文献   

11.
Various synthetic protocols were used to prepare several classes of polysiloxane–silica filler systems. The structures of these fillers and their interactions with the polysiloxane matrices were studied using small-angle X-ray and neutron scattering. In addition, the mechanical properties of the composites were characterized using equilibrium stress–strain isotherms in elongation. The results indicated that manipulation of the chemical reactions used to generate the filler can lead to a wide range of complex structures and unusual properties. Some of the observed mechanical properties were correlated with information on the composite structures and on elastomer–filler interactions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1167–1189, 1998  相似文献   

12.
Monodisperse size colloidal particles varying in chemical composition were synthesized by emulsifier‐free emulsion polymerization. Using a stress‐controlled rheometer, the rheological behavior of colloidal suspensions in a low molecular weight liquid polysulfide was investigated. All suspensions exhibited shear thinning behavior. The shear viscosity, dynamic moduli, and yield stress increased as interactions between particles and matrix increased. The rheological properties associated with network buildup in the suspensions were sensitively monitored by a kinetic recovery experiment. We propose that interfacial interactions by polar and hydrogen bonding between particles and matrix strongly promote affinity of matrix polymer to the filler particles, resulting in adsorption or entanglement of polymer chains on the filler surface. A network structure was formed consisting of particles with an immobilized polymer layer on the particle surface with each particle floc acting as a temporary physical crosslinking site. As the interfacial interaction increases, the adsorbed layer thickness on the filler particles, hence, the effective particle volume fraction, increases. As a result, the rheological properties were enhanced in the order PS < PMMA < PSVP. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 815–824, 1999  相似文献   

13.
Polymer networks showing a thermally induced shape‐memory effect were prepared through the crosslinking of oligo(?‐caprolactone)dimethacrylates under photocuring with or without an initiator. The influence of the molecular weight of the oligo(?‐caprolactone)dimethacrylates and the initiator concentration on the macroscopic properties of the polymer networks was investigated. The isothermal and nonisothermal crystallization behavior of the polymer networks was evaluated as a basic principle of the functionalization process. Shape‐memory properties such as the strain fixity and strain recovery rate were quantified with cyclic thermomechanical tensile experiments for different maximum elongations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1369–1381, 2005  相似文献   

14.
The strain recovery of three syndiotactic polypropylenes (s‐PPs) differing in the percentage of [rrrr] pentad is investigated. A suitable method based on loading–unloading tests at constant displacement rate in tensile loading conditions is adopted to measure the residual and recovered strain components of the applied strain. The method allows to obtain a large amount of data from few tests and to explore a wide strain range. The dependence of the material's strain recovery on the applied strain is analyzed in relation to s‐PP strain‐induced microstructural changes and crystalline form transitions, which are reported in literature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1276–1282  相似文献   

15.
The effect of silica nanofiller surface chemistry on compounded particle size and high strain particle dewetting in a semitransparent nanosilica‐filled elastomer composite was determined using backscattered visible light and transmitted light, respectively. The integrated intensities of backscattered light from the samples were collected at various visible wavelengths for thin‐film composites using ultraviolet–visible spectrometer with an integrating sphere. The data revealed strong Rayleigh‐type scattering from compounded filler particles. Size information was extracted and found to broadly correlate with scanning electron microscopy image analysis of fracture surface. Incorporation of a siloxane surface treatment chemical during compounding resulted in a reduced average filler particle size in the cured composite. On extension of the samples, an optical transition was observed only in the filled composites. At high strains, the semi transparent samples displayed an abrupt drop in transparency becoming opaque. This was quantified using a simple light transmission‐sample extension technique. Strain‐induced crystallization was discounted as the cause for the transition by X‐ray diffraction analysis. The onset yield stress for the optical transition was found to be filler surface‐chemistry‐dependent with the siloxane‐treated filler exhibiting a greatly increased onset stress value. These observations were discussed and rationalized in terms of filler particle–matrix dewetting and cavitation at high strains. Matrix–filler dewetting was distinguished from matrix cavitation by comparison with Beer–Lambert behavior derived from unstrained samples. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011.  相似文献   

16.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

17.
A series of sulfonated copolyimides (co‐SPIs) bearing pendant sulfonic acid groups were synthesized from 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), bis(3‐sulfopropoxy) benzidines (BSPBs), and common nonsulfonated diamines via statistical or sequenced polycondensation reactions. Membranes were prepared by casting their m‐cresol solutions. The co‐SPI membrane had a microphase‐separated structure composed of hydrophilic and hydrophobic domains, but the connecting behavior of hydrophilic domains was different from that of the homo‐SPIs. The co‐SPI membranes displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. With water uptake values of 39–94 wt %, they showed dimensional changes in membrane thickness of about 0.11–0.58, which were much lower than those of homo‐SPIs. The proton conductivity σ values of co‐SPI membranes with ion exchange capacity values ranging from 1.95–2.32 meq/g increased sigmoidally with increasing relative humidity. They displayed σ values of 0.05–0.16 S/cm at 50 °C in liquid water. Increasing temperature up to 120 °C resulted in further increase in proton conductivity. The co‐SPI membranes showed relatively good conductivity stability during the aging treatment in water at 100 °C for 300 h. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1545–1553, 2005  相似文献   

18.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

19.
The recovery properties of dry and water saturated polyamide 6 (PA6) and its copolymer PA6/66 (ratio 4:1 by mol) were studied at elevated temperatures above the glass‐transition temperature in uniaxial tensile tests. The data yield critical points along the true stress–strain curves at which the differential compliance and the recovery property change. These critical points include the onset of the plastic deformation (point A), the yield point (B), and the point where the elasticity of the samples reaches a plateau value (C). The strains at points A and B remain constant, whereas the strain at point C varies with temperature. The invariance of the critical strains at points A and B is assumed to be the result of the homogeneous strain distribution in the system and the general activation of the intralamellar block slip mechanism at low deformations. The strain at point C, being related to the properties of the entangled network, varies because the effective entanglement density of the network changes due to the change in the hydrogen bond number with temperature. With the Gaussian model of Haward and Thackray, we calculated the network moduli. From these data, we derived that the network stress remains constant at point C. At point C, the deformation mechanism starts to change from the block slip mechanism to a stress‐induced melting–recrystallization process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 87–96, 2005  相似文献   

20.
The strain hardening behavior of model polymer glasses is studied with simulations over a wide range of entanglement densities, temperatures, strain rates, and chain lengths. Entangled polymers deform affinely at scales larger than the entanglement length as assumed in entropic network models of strain hardening. The dependence of strain hardening on strain and entanglement density is also consistent with these models, but the temperature dependence has the opposite trend. The dependence on temperature, rate, and interaction strength can instead be understood as reflecting changes in the flow stress. Microscopic analysis of local rearrangements and the primitive paths between entanglements is used to test models of strain hardening. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3487–3500, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号