首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the transport of carbon dioxide, oxygen, and nitrogen in amorphous membranes of vulcanized natural rubber reinforced with regenerated cellulose. The values of the permeability coefficient of carbon dioxide, oxygen, and nitrogen in the composites with 25% of cellulose, measured at 25 °C and 15 cmHg of pressure, are roughly one‐third of those measured in the same conditions for these gases in natural rubber. The isotherms representing the variation of both the permeability and diffusion coefficients of the gases with pressure present a relatively sharp increase in the region of low pressures, attributed to changes in the free volume. The analysis of the permeability characteristics of the membranes in terms of the free‐volume theory suggests that gas transport is severely hindered in both the cellulose phase and the cellulose–rubber interphase of the composites. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 393–402, 2000  相似文献   

2.
Chitin–cellulose blends dissolved in dimethylacetamide containing LiCl (7% w/w) have been studied in a wide concentration range, from very dilute solutions to medium concentrations and up to solid films (absence of diluent). The intrinsic viscosities at various chitin–cellulose ratios, as well as the phase diagram behavior, imply a good compatibility between the components. The result is confirmed by the infrared measurements on solid films. The lack of anisotropic phase formation in chitin–diluent binary solutions and the anomalous trend of v′CH–CE line on the phase diagram are both interpreted on the basis of aggregation phenomena.  相似文献   

3.
A new molecular thermodynamic model is developed of the gas permeability in polymer membranes on the basis of configurational entropy and Flory‐Huggins theory to predict permeability dependence on the concentration of penetrant. Three kinds of configurational entropy are taken into account by this model; that is, the disorientation entropy of polymer, the mixing entropy, and specific interaction entropy of polymer/gas. The validity of the mathematical model is examined against experimental gas permeability for polymer membranes. Agreement between experimental and predicted permeability is satisfactory. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 661–665, 2007  相似文献   

4.
In a previous article, we presented a simple modification of the traditional Flory–Huggins theory that took intramolecular screening effects (or same chain contacts) into account. In this article, we present a natural extension of that work, in which free‐volume effects are also explained with an equation‐of‐state model. The predictions of the interaction parameter, χ, for several polymer–solvent systems are presented, over the entire concentration range, in θ solvents and good solvents. A geometric mean assumption is applied to the calculation of an exchange energy interaction term. The predictions of χ are successful to various degrees when internal pressures are used, whereas the use of solubility parameters in most cases produces fairly good agreement with experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2911–2922, 2003  相似文献   

5.
Summary: The chain‐length dependence of the Flory‐Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer‐blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables, rn, rw, rz, and chain‐length distribution, have effects on the spinodals for polydisperse polymer blends.

The spinodals at different chain lengths.  相似文献   


6.
Mutual diffusion coefficients and sorption isotherms of methyl methacrylate (MMA) and butyl acrylate (BA) monomers in methyl methacrylate‐butyl acrylate copolymer (MMA‐BA) have been measured by gravimetric sorption. MMA is found to have higher solubility and diffusion rates in the copolymer than BA. Sorption data for MMA were interpreted using classical Flory‐Huggins thermodynamic theory with a constant interaction parameter (χ). A modified version of this theory has been applied to correlate the sorption data of BA, which exhibit a temperature and concentration‐dependent χ parameter. For MMA, the isotherm data reveal enhanced polymer‐solvent interactions with increasing temperature, while for BA the data indicate a drive toward phase separation with increasing temperature. Despite the difference in thermodynamic behavior, both monomers are found to exhibit Fickian diffusion and the diffusivity data are correlated reasonably well with the Vrentas‐Duda free volume theory. Some deviation between the free‐volume correlation and the experimental data is observed at the lowest temperature and BA concentration examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1996–2006, 2007  相似文献   

7.
We report the first high pressure investigations of the nematic–isotropic transition in the composites of a liquid crystal compound with hydrophilic aerosil particles. The low concentrations of the aerosil particles used create soft gels of the composites. As expected TN–Iso, the nematic–isotropic transition at room pressure exhibits a non-monotonic variation with increasing aerosil concentration. This non-monotonic behaviour is seen in the isobaric scans over the wide range of pressures studied, and its “magnitude” is dependent on the pressure applied. The surprising result of the present investigations on these nanocolloidal systems is that the slope of the pressure–temperature boundary also exhibits a non-monotonic dependence with the aerosil concentration, which qualitatively is similar to that of the transition temperature variation. Employing the transition enthalpy values determined at room pressure using differential scanning calorimetric scans collected at low heating rates, we calculate the transition volume dependence on the aerosil concentration. The study adds a new dimension, namely, the influence of pressure on liquid crystalline transitions in restricted geometries.  相似文献   

8.
The results of thermal conductivity study of epoxy–matrix composites filled with different type of powders are reported. Boron nitride and aluminum nitride micro‐powders with different size distribution and surface modification were used. A representative set of samples has been prepared with different contents of the fillers. The microstructure was investigated by SEM observations. Thermal conductivity measurements have been performed at room temperature and for selected samples it was also measured as a function of temperature from 300 K down to liquid helium temperatures. The most spectacular enhancement of the thermal conductivity was obtained for composites filled with hybrid fillers of boron nitride–silica and aluminum nitride–silica. In the case of sample with 31 vol.% of boron nitride–silica hybrid filler it amounts to 114% and for the sample with 45 vol.% of hybrid filler by 65% as compared with the reference composite with silica filler. However, in the case of small aluminum nitride grains application, large interfacial areas were introduced, promoting creation of thermal resistance barriers and causing phonon scattering more effective. As a result, no thermal conductivity improvement was obtained. Different characters of temperature dependencies are observed for hybrid filler composites which allowed identifying the component filler of the dominant contribution to the thermal conductivity in each case. The data show a good agreement with predictions of Agari‐Uno model, indicating the importance of conductive paths forming effect already at low filler contents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Excellent transparent films were prepared from bacterial cellulose (BC) sheets by solubilization of its defibrillated freeze‐dried specimens in a solvent of dimethylacetamide (DMAc) containing 8.0% (w/w) lithium chloride (LiCl), and their properties were compared with those of the native BC. Fibrillar structure of the native BC disappeared after dissolution, and the film formed after dissolution also loose this structure. Occurence of structural transformation from crystalline to amorphous state was also evidenced by X‐ray diffraction, solid state cross polarization/magic angle spinning 13C‐NMR and attenuated total reflectance–Fourier transform infrared spectroscopic analyses. In addition, excellent 3D uniform structure of the transparent BC film was further evidenced by X‐ray micro computed tomography. Plastic‐like characteristic was enhanced by film formation after dissolving the BC specimens in the DMAc–LiCl solution as shown by changing mechanical properties, a slight decrease in tensile strength (67.2 to 59.6 MPa) and breaking stress (67.2 to 58.4 MPa) but significant increase in elongation at break from 3.4 to 10.5%, and improvement of work of fracture from 5.8 to 21.2 kJ/m2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Fibrin–gelatin composite (PFG) films were prepared and crosslinked with glutaraldehyde as reported by us previously. These composites were graft‐copolymerized with poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(2‐hydroxypropyl methacrylate) (PHPMA) with a potassium persulfate and sodium metabisulfite redox initiation system. The graft copolymers (PFG‐HEMA and PFG‐HPMA) were characterized for their percentage of grafting, percentage of equilibrium water content, and percentages of free water and bound water. The chemical composition and thermal, mechanical, morphological, and surface characteristics were also evaluated. The optimum conditions for obtaining a maximum percentage of grafting were standardized. PFG and its graft copolymers exhibited higher equilibrium water contents ranging from 60 to 77% when compared with those of HEMA and HPMA homopolymers. DSC studies revealed increased freezing water contents and decreased bound‐water contents for the graft copolymers when compared with those of PFG alone. These properties improved the efficacy of hydrogels. PFG demonstrated better mechanical properties as compared with its graft copolymers. This may be attributed to the alkaline reaction conditions wherein protein hydrolysis of PFG would have occurred thereby reducing the overall strength of the graft copolymers. IR and scanning electron microscopic studies confirmed the grafting of PHEMA and PHPMA onto PFG. Contact‐angle studies revealed increased polarity for graft copolymers, which is a symbol for increased hydrophilicity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2241–2252, 2004  相似文献   

11.
The influence of the surface chemistry of the cellulose fiber and polymer matrix on the mechanical and thermal dynamic mechanical properties of cellulose‐fiber‐reinforced polymer composites was investigated. The cellulose fiber was treated either with a coupling agent or with a coupling‐agent treatment followed by the introduction of quaternary ammonium groups onto the fiber surface, whereas the polymer matrix, with opposite polar groups such as polystyrene incorporated with sulfonated polystyrene and poly(ethylene‐co‐methacrylic acid), was compounded with the fiber. The grafting of the fiber surface was investigated with Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. Experimental results showed that an obvious improvement in the mechanical strength could be achieved for composites with an ionic interface between the fiber and the polymer matrix because of the adhesion enhancement of the fiber and the matrix. The improved adhesion could be ascribed to the grafted ionic groups at the cellulose‐fiber surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2022–2032, 2003  相似文献   

12.
13.
CoNi–barium ferrite magnetic composites have been prepared by using a chloride electroplating bath. The use of a cationic surfactant and a vigorous stirring of solution by means of a rod stirrer have been the key to assure a significant insertion of particles in the deposits. This incorporation was confirmed by chemical analysis, cross-section images and X-ray diffraction results. A maximum value of 12 wt.% of barium ferrite was obtained. Anomalous codeposition of CoNi was maintained, although the cobalt percentage was enhanced by the presence of the cationic surfactant. A clear enlargement of composite coercivity was obtained as a consequence of micrometric hard magnetic particles insertion in the deposits.  相似文献   

14.
X‐ray diffraction technique is used to evaluate the evolution of the segmental orientation in a natural rubber sample during mechanical uniaxial stretching and in the Gaussian regime condition. The method proves to be sensitive enough for testing the validity of the stress‐optical law. Measurements are performed at different temperatures and show that the dependence of the orientation parameter upon elongation is very close to the prediction of classical phantom theories. On the contrary, a significant Mooney–Rivlin correction is needed to account for the stress–strain relation. Consequently, systematic deviations from the stress‐optical law are observed, in particular for elongations below 2. These deviations are adverse from predictions of both the constrained and the diffuse junction theories. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 943–950  相似文献   

15.
To analyze the natural rubber behavior during vulcanization under different cure treatments, an experimental investigation using small angle X‐ray scattering was performed. To achieve this, a set of samples were prepared using sulfur and Nt‐butyl‐2‐benzothiazole sulfenamide as accelerator and then cured at temperatures between 403 and 463 K reaching their optimum mechanical properties considering rheometer tests. The crosslink density of the samples was evaluated by means of the swelling technique in solvent. In the usual Lorentz corrected representation of the X‐ray scattered intensity, a maximum was observed in the plots corresponding to the cured samples, revealing a highly correlated structure. This maximum shifted toward higher values of the scattering vector when the cure temperature of the samples increased. This behavior is discussed in terms of the crosslinks type present in the vulcanized rubber network at different cure temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2966–2971, 2007  相似文献   

16.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

17.
Any quantitative information on the strength of interactions between inorganic filler and polymer is substantial for the future application of the composite. The magnitude of adhesion of two phases may be deduced from results collected by various experimental techniques. Polyether‐urethane/modified carbonate‐silicate fillers systems containing different amount of filler (5, 10, and 20 wt %) were the materials investigated. We propose to express the magnitude of modified filler/polymer interactions by Flory–Huggins χ parameter. It may be deduced from the results collected by inverse gas chromatographic (IGC) experiment. We have also tried to explain the influence of the solvent on values of the evaluated parameters and to check the usefulness of some of presented methods to minimize Δχ effect. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1853–1862, 2006  相似文献   

18.
The end groups of styrene–methyl methacrylate (St‐MMA) copolymers polymerized radically with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator, which are difficult to characterize even by NMR, were investigated by pyrolysis–gas chromatography. On the resulting pyrograms, characteristic products that formed from the end‐group moiety due to AIBN, such as 2‐cyanopropane, 2‐cyanopropen, and various compounds consisting of an isobutyronitrile group and a monomer unit, were observed together with those from the main chain, such as St and MMA monomers and various dimeric and trimeric products. The relative abundance between the recombination and disproportionation termination reactions in the copolymerization process was estimated from the relative intensities between the characteristic peaks of the end group and those of the main chain. Thus, the estimated abundance for the termination reactions suggested that the polymerization process for this particular copolymer system terminated preferentially by recombination rather than by disproportionation. Furthermore, the relative abundance between the monomer units adjacent to the chain‐end AIBN residues was estimated on the basis of the peak intensities of the products consisting of an isobutyronitrile group and either monomer unit, which reflected the penultimate neighboring structure of the end group in the polymer chain. Thus, the observed results suggested that the isobutyronitrile radical formed by the dissociation of AIBN in the initiation reaction was predominantly adjoined by St monomer rather than by MMA monomer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1880–1888, 2000  相似文献   

19.
The electric self‐heating behavior of graphite‐powder‐filled high‐density polyethylene is studied. Two equations are proposed to describe the electric‐field dependence of the self‐heating temperature and resistance dependence of the critical field. Based on Ohmic and non‐Ohmic approximations and the heat‐dissipation model, the self‐heating equations are also derived theoretically. The equations show that self‐heating is determined by the initial resistance and true positive temperature coefficient (PTC) effect under fields. Design and application principles for polymer PTC heaters are suggested on the basis of the experimental results and proposed equations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1756–1763, 2000  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号