首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyurethanes with allyl side chains were synthesized by the simultaneous acid‐catalyzed reaction of dialdehydes ( 1 ), alkylene N,N′‐bis(trimethylsilyl) carbamates ( 4 ), and allyltrimethylsilane ( 5 ). When 5 was added to a mixture of 1 , 4 , and the catalyst, a low molecular weight polymer was formed, as well as a large amount of an insoluble gel. However, when a mixture of 1 , 4 , and 5 was added to the catalyst, the formation of gel was depressed, and the desired polyurethanes, consisting of 1 , 4 , and 5 in a molar ratio of 1/1/2, were obtained in good yields. This polyurethane synthesis is unusual in that it concurrently constructs both the polymer backbone and the functional side chains from three starting compounds. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1236–1242, 2002  相似文献   

2.
A new bipolar conjugated polyfluorene copolymer with triphenylamine and cyanophenylfluorene as side chains, poly{[9,9‐di(triphenylamine)fluorene]‐[9,9‐dihexyl‐fluorene]‐[2,7‐bis(4′‐cyanophenyl)‐9,9′‐spirobifluorene]} ( PTHCF ), was synthesized for studying the polymer backbone emission. Its absolute weight‐average molecular weight was determined as 4.85 × 104 by using gel permeation chromatography with a multiangle light scattering detector. In contrast to the electronic absorption spectrum in dilute solution, the absorbance of PTHCF in thin film was slightly blue shifted. By comparison of the solution and thin‐film photoluminescence (PL) spectra, a red shift of Δλ = 8–9 nm was observed in the thin‐film PL spectrum. The HOMO and LUMO energy levels of the resulting polymer were electrochemically estimated as ?5.68 and ?2.80 eV, respectively. Under the electric‐field intensity of 4.8 × 105 V cm?1, the obtained hole and electron mobilities were 2.41 × 10?4 and 1.40 × 10?4 cm2 V?1 s?1, respectively. An electroluminescence device with configuration of ITO/PEDOT:PSS/ PTHCF 70%+PBD30%/CsF/Ca/Al exhibited a deep‐blue emission as a result of excitons formed by the charges migrating along the full‐fluorene main chain. The incorporation of the bipolar side chains into the polymer structure prevented the intermolecular interaction of the fluorene moieties, balance charge injection/transport, and thereby improve the polymer backbone emission. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Poly‐(2‐ethynylpyridinum bromide) (PEPBP) having propargyl side chains was prepared by the direct polymerization of 2‐ethynylpyridine and propargyl bromide under mild reaction conditions without any initiator and catalysts. The polymerization proceeded well to give PEPBP with propargyl side chains in relatively high yields. Various spectral data for the polymer structure indicated that the conjugated polymer system having N‐propargylpyridinum substituent was formed. This ionic polymer was completely soluble in water, methanol, dimethylformamide, dimethyl sulfoxide, and N,N‐dimethylacetamide and well processable into thin homogeneous film. The photoluminescence intensity (λmax = 760 nm) of this polymer increased as the temperature was increased. At 1 KHz and room temperature, this polymer has k′ = 2.9 and σ = 7.3 × 10?10 (S/cm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3151–3158, 2001  相似文献   

4.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The molecular orientation of an aromatic polycarbonate containing fluorene side chains was investigated by polarized infrared spectroscopy and birefringence analyses. The copolymers were synthesized from 2,2‐bis(4‐hydroxyphenyl)propane (BPA), 9,9‐bis(4‐hydroxy‐3‐methylpheny)fluorene (BMPF), and phosgene by interfacial polycondensation. The 1449‐cm?1 band of the uniaxially oriented films, stretched at the glass‐transition temperature (Tg) plus 5 °C, was assigned to various combinations of CC stretching and CH in‐plane bending vibrations in the fluorene ring, and the transition moment angle was estimated to be 90°. The intrinsic birefringence of aromatic polycarbonate films with BMPF molar ratios ranging from 0.5 to 1 was obtained with the 1449‐cm?1 band. The copolymer was estimated to show zero intrinsic birefringence at the BMPF molar ratio of 0.75, and the BMPF homopolymer showed negative intrinsic birefringence. A linear relationship between the volume fraction of BMPF units and the intrinsic birefringence indicated that the two monomer units of BPA and BMPF in each copolymer were not independent, and an intrinsic birefringence could be defined even in the copolymer. The sign of the photoelastic coefficient in the homopolymer with BMPF units was positive. The different signs of the photoelastic coefficient and the intrinsic birefringence suggest that the fluorene side‐chain orientation induced by stress in the glass state is quite different from the orientation of the uniaxially oriented films stretched at Tg + 5 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1554–1562, 2003  相似文献   

6.
A poly(p‐phenylenevinylene) derivative bearing conjugated side chains (polyCPV) was synthesized by Migita‐Kosugi‐Stille type coupling polycondensation reaction. This polymer contains phenylenevinylene units in both the main chain and the side chains. UV–vis absorption and fluorescence emission spectroscopies revealed a well‐developed π‐conjugation of the polyCPV. The absorption band of the polymer was extended to long wavelengths. A fluorescent emission maximum of polyCPV is located at considerably longer wavelengths than that of the conjugated side chain monomer. Electron spin resonance measurements of polyCPV confirmed generation of charge species in both the main chain and the side chains via iodine doping. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Novel side chain polypseudorotaxanes with cucurbit[7]uril (CB[7]) threaded onto the side chains are synthesized from a water‐soluble polymer and CB[7] in water by simple stirring at room temperature. CB[7] beads could move from the hexyl groups to the benzyl and a part of viologen units in the side chains of polymer when the molar ratio of CB[7] to the monomer reaches from 1 to 2 as shown by 1H NMR studies, and it is considered that the hydrophobic and charge‐dipole interactions of CB[7] are the driving forces. The sizes of the polypseudorotaxanes with different molar ratio of CB[7] to 4VBVHeP in aqueous solution increase with increasing the molar ratio of CB[7] to 4VBVHeP as found by DLS and resonance light scattering, while the typical cyclic voltammograms and UV–vis data indicate that CB[7] are not threaded in the viologen units of P4VBVHeP, and the oxidation reduction characteristic of the polymer is remarkably affected by the addition of CB[7]. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A series of block copolystyrene derivatives, poly{[4‐(4‐sulfobutyloxy)styrene]xblock‐[4‐(n‐butoxystyrene)]y} (PSBOSxb‐PnBOSy), containing a flexible alkylsufonated side chain and hydrophobic alkoxy chain with various ion exchange capacities (IECs) have been synthesized based on living anionic polymerization. The resulting crosslinked membranes were prepared using 4,4′‐methylene‐bis[2,6‐bis(hydroxyethyl)phenol] as the crosslinker in the presence of methanesulfonic acid. The crosslinked PSBOS2.2b‐PnBOS1 membrane with IEC of 2.89 mequiv g?1 displays a high proton conductivity (0.01 S cm?1) at 30% relative humidity and 80 °C, which is comparable to that of Nafion. The well‐developed phase separation and the continuous hydrophilic domains in the crosslinked PSBOS2.2b‐PnBOS1 membranes have been observed in a transmission electron microscope image. Moreover, the dynamic mechanical analysis measurement and Fenton's reagent testing show that the crosslinked PSBOSxb‐PnBOSy membranes have good mechanical properties and oxidative stability. These results indicate that the introduction of flexible alkylsulfonated side chains to the polystyrene main chains positively affect both the proton conductivity and oxidative stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
For the synthesis of polyethers with a variety of keto side chains in a one‐step reaction, the three‐component polycondensation of dialdehydes, diol disilyl ethers, and silyl enol ethers of ketones was investigated. The method of monomer addition strongly affected the molecular weight of polymers and was optimized to yield high molecular weight polymers by model reactions. A variety of dialdehydes, diol disilyl ethers, and silyl enol ethers were polymerized in the presence of a catalytic amount of triphenylmethyl (trityl) perchlorate in CH2Cl2 at −78 °C according to the method of monomer addition. This polymer synthesis was unusual in that it concurrently constructed both the polyether backbone and the keto side chains from three starting compounds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 179–188, 2000  相似文献   

10.
Two new blue‐light‐emitting polyphosphazenes ( 1 and 2 ) containing carbazolyl groups as side chains were synthesized from a highly reactive macromolecular intermediate by a nucleophilic substitution reaction. Molecular structural characterization for the polymers was presented by 1H NMR, IR, and ultraviolet–visible spectra, gel permeation chromatography, and differential scanning calorimetry. The polymers exhibited excellent solubility in common organic solvents and were thermally stable. A fluorescence analysis of the two materials in tetrahydrofuran showed a strong blue light emitting. The quantum yields of the polyphosphazenes were 0.55 for 1 and 0.64 for 2 , relative to quinoline (in 0.1 N H2SO4). An electroluminescent diode was fabricated, and a bright blue light was observed; the maximum external quantum efficiency was about 0.026% at an applied forward voltage of 23 V. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3428–3433, 2001  相似文献   

11.
A series of fluorosilicone (FLS) homopolymers with 4,4,5,5,6,6,7,7,8,8, 9,9,10,10,11,11,11‐heptadecafluoroundecylmethylsiloxane [? C8F17CH2CH2CH2(CH3) SiO? ; HDFUSiO] and copolymers based on dimethylsiloxane [? (CH3)2SiO? ] were prepared by the hydrosilylation of 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11‐heptadecafluoro‐1‐undecene (C8F17CH2CH?CH2) with poly(hydromethylsiloxane)s. Thermal characterization showed that the decomposition of fluoroalkyl side chains occurred at about 245 °C. Side‐chain crystallization was observed for FLSs with more than 30 mol % HDFUSiO. The refractive index decreased with increasing HDFUSiO content. The dielectric constant increased with increasing HDFUSiO content. The liquid surface tension of the FLS containing 10 mol % HDFUSiO was as low as that of the highly fluorinated FLSs. FLSs with HDFUSiO and trichlorosilylethyl side chains (Cl3SiCH2CH2? ) were also prepared so that their solid surface tension (surface free energy) could be measured. The surface free energy of these FLSs decreased with increasing Cl3SiCH2CH2? content, but the sliding angle of a water droplet and the contact‐angle hysteresis adversely increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2704–2714, 2003  相似文献   

12.
Five polyfluorenes bearing bulky trimethylsilyl (PTMS1 and PTMS2), tris(trimethylsilyl)silyl (PTTMS1), and silsesquioxane groups (PPOSS1 and PPOSS2) were synthesized through palladium‐catalyzed Suzuki coupling reactions. In the solution state, every polymer showed comparable ultraviolet–visible spectra, and they emitted blue light with high quantum efficiency. In the solid state, however, three trimethylsilyl‐functionalized polyfluorenes indicated redshifts of the fluorescence peak. In particular, PTMS1 and PTTMS1, having a hydrogen at the C‐9 position of fluorene, also showed green‐light emissions. After the annealing of the spin‐coated films, the blue‐emissive peak decreased and the green‐emissive peak became stronger in the photoluminescence spectra of three trimethylsilyl‐functionalized polyfluorenes. In contrast, PPOSS2 showed a pure blue‐light emission in the film state and even after the thermal treatment, which could be accomplished by the encapsulation of the polymer chains by the large polyhedral oligomeric silsesquioxane molecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2119–2127, 2005  相似文献   

13.
Polystyrene was directly azidated in 1,2‐dichloroethane or chlorobenzene using a combination of trimethylsilyl azide and a hypervalent iodine (III) compound, (diacetoxyiodo)benzene. 2D NMR HMBC experiments indicated that the azide groups were attached to the polymer backbone and also possibly to the aromatic pendant groups. The amount of introduced azide groups was estimated by semi‐quantitative IR spectroscopy and elemental analysis. Approximately 1 in every 11 styrene units could be modified by using a ratio of hypervalent iodine compound to trimethylsilyl azide to styrene units of 1:2.1:1 at 0 °C for 4 h followed by heating to 50 °C for 2 h in chlorobenzene. The azidated polymers were further used as backbone precursors in the synthesis of polymeric brushes with hydrophilic side chains via a copper‐catalyzed click grafting‐onto reaction with poly(ethylene oxide) monomethyl ether 4‐pentynoate. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 966–974, 2010  相似文献   

14.
A new kind of dendronized polymer brush with metallo‐supramolecular polymer side chains was fabricated by a combination of macromonomer and graft‐to approach. The alternating copolymers of maleic anhydride and styryl macromonomers pendant with Fréchet‐type dendrons of three generations were reported previously. In this article, terpyridine groups were introduced along the backbone of the dendronized polymers through the amidolysis of anhydride groups. The terpyridine functionalized PEO linear chains were then incorporated through the complexation of terpyridine and Ru(II) ion. Thus, dendronized polymer brushes with amphiphilic properties were synthesized. AFM analysis showed worm‐like single molecular morphologies of the polymers of three generations, and 1H NMR analysis indicated that such molecular brushes had an amphiphilic nature in solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3303–3310, 2007  相似文献   

15.
We investigated new polyaniline copolymers with solvent‐mimic side chains for enhanced processability in various solvents. The solvent‐mimic side chains, benzyloxypropoxy (BOP), phenoxybutoxy (POB), and dihydroxypropoxy (DHP), were introduced into copolymers and used with nonpolar aromatic and polar alcoholic solvents, respectively. Compared to a polyaniline homopolymer, polyaniline copolymers with a small amount of side chains (<4 mol %) exhibit different physical properties, including film‐forming ability. This can be attributed to the solvent‐mimic side chains strongly interacting with the solvent and/or the polyaniline backbone. Especially, in nonpolar aromatic solvents, polyaniline copolymers with nonpolar aromatic BOP and POB side chains exhibit good film‐forming ability leading to high electrical conductivity, while the polyaniline homopolymer did not form a film. Therefore, introducing solvent‐mimic side chains in conducting polymers is a very attractive method of enhancing their processability and physical properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1986–1995  相似文献   

16.
A series of novel comb polymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐g‐polystyrene (PMPCS‐g‐PS), with mesogen‐jacketed rigid side chains were synthesized by the “grafting onto” method from α‐yne‐terminated PMPCS (side chain) and poly(vinylbenzyl azide) (backbone) by Cu(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. The α‐yne‐terminated PMPCS was synthesized by Cu(I)‐catalyzed atom transfer radical polymerization initiated by a yne‐functional initiator. Poly(vinylbenzyl azide) was prepared by polymerizing vinylbenzyl chloride using nitroxide mediated radical polymerization to obtain poly(vinylbenzyl chloride) as the precursor which was then converted to the azide derivative. The chemical structure and architectures of PMPCS comb polymers were confirmed by 1H NMR, gel permeation chromatography, and multiangle laser light scattering. Both surface morphologies and solution behaviors were investigated. Surface morphologies of PMPCS combs on different surfaces were investigated by scanning probe microscopy. PMPCS combs showed different aggregation morphologies when depositing on silicon wafers with/without chemical modification. The PMPCS comb polymers transferred to polymer‐modified silicon wafers using the Langmuir‐Blodgett technique showed a worm‐like chain conformation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Copolymers of ethene and 1‐octene, 1‐dodecene, 1‐octadecene, and 1‐hexacosene were carried out with [Ph2C(2,7‐di‐tertBuFlu)(Cp)]ZrCl2/methylalumoxane as a catalyst to obtain short‐chain branched polyethylenes with branch lengths of 6–26 carbon atoms. This catalyst provided high activity and a very good comonomer and hydrogen response. In this study, the influence of the length and number of the side chains on the mechanical properties of the materials was investigated. The crystalline methylene sequence lengths of the copolymers and lamellar thicknesses were calculated after the application of a differential scanning calorimetry/successive self‐annealing separation technique. By dynamic mechanical analysis, the storage modulus as an indicator of the stiffness and the loss modulus as a measure of the effect of branching on the α and β relaxations were studied. The results were related to the measurements of the polymer density and tensile strength to determine the effect of longer side chains on the material properties. The hexacosene copolymers had side chains of 24 carbons and remarkable material properties very different from those of conventional linear low‐density polyethylenes. The side chains of these copolymers crystallized with one another and not only parallel to the backbone lamellar layer, depending on the hexacosene concentration in the copolymer. The side chains crystallized even at low hexacosene concentrations in the copolymer. A transfer of these results to 16 carbons side chains in ethene–octadecene copolymers was also possible. © 2006 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1600–1612, 2006  相似文献   

18.
Fluorinated polymer particles with grafting sulfonate chains, which showed high dispersion stability in aqueous media, were synthesized by the crosslinking of block copolymer micelles. A crosslinkable block copolymer, poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene]‐b‐poly(neopentyl 4‐styrenesulfonate), composed of a statistical copolymer segment of 2,3,4,5,6‐pentafluorostyrene with 4‐(1‐methylsilacyclobutyl)styrene and a neopentyl 4‐styrenesulfonate segment, was prepared by the nitroxy‐mediated living radical polymerization of a 2,3,4,5,6‐pentafluorostyrene/4‐(1‐methylsilacyclobutyl)styrene mixture and neopentyl 4‐styrenesulfonate. The block copolymer formed micelles with a poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene] core in acetonitrile, which were crosslinked via the ring‐opening reaction of silacyclobutyl groups in the core by a treatment with a platinum catalyst. The deprotection of sulfonate groups in the micelle corona by exposure to trimethylsilyl iodide and a treatment with aqueous HCl, followed by neutralization with aqueous NaOH, provided a polymer particle with polymer chains of sodium 4‐styrenesulfonate grafted on its surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1316–1323, 2007  相似文献   

19.
This article reports on the synthesis, characterization, and properties of various anthracene‐containing poly (p‐phenylene‐ethynylene)‐alt‐poly(p‐phenylene‐vinylene) (PPE‐PPV) polymers (AnE‐PVs) bearing statistical distributions of various side chains. Primarily, the ratio of linear octyloxy and branched 2‐ethylhexyloxy side chains at the poly(p‐phenylene vinylene) (PPV) parts was varied, leading to the polymers stat, stat1, and stat2. Furthermore, polymers also containing asymmetric substituted PPV and poly(p‐phenylene ethynylene) units (bearing methoxy and 2‐ethylhexyloxy side chains) were prepared yielding stat3, stat4, and stat5. These materials exhibit a broad variation in their photovoltaic properties. It is once more shown that side chains and their distribution can crucially affect the photovoltaic device performance. The introduction of units with asymmetric substitution into these systems seems to be harmful for their utilization in photovoltaic applications. Organic field‐effect transistors were fabricated to investigate hole mobilities in these new materials. Large variance was observed, falling in the range of almost two orders of magnitude, indicating rather different π–π stacking behavior of the polymer backbones owing to side‐chain modifications. Moreover, a selection of the new polymeric systems was investigated regarding their potential for light‐emitting diode (LED) applications. Polymer LEDs using the polymers AnE‐PVstat, ‐stat3, ‐stat4, and ‐stat5, as the active layer showed turn‐on voltage of ~2 V and exhibited red light emission. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) consisting of macrocyclic poly(2‐hydroxylethyl methacrylate) (c‐PHEMA) as backbone and polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) amphiphilic block copolymers as side chains were synthesized by the combination of atom transfer radical polymerization (ATRP), click chemistry, and single‐electron transfer nitroxide radical coupling (SET‐NRC). First, a linear α‐alkyne‐ω‐azido heterodifunctional PHEMA (l‐HC?C‐PHEMA‐N3) was prepared by ATRP of HEMA using 3‐(trimethylsilyl)propargyl 2‐bromoisobutyrate as initiator, and then chlorine end groups were transformed to ? N3 group by nucleophilic substitution reaction in DMF in the presence of an excess of NaN3. The 3‐trimethylsilyl groups could be removed in the presence of tetrabutylammonium fluoride, and the product was cyclized by “click” chemistry in high dilution conditions. The hydroxyl groups on c‐PHEMA were transferred into bromine groups by esterification with 2‐bromoisobutyryl bromide and then initiate the ATRP of styrene. The formed macrocyclic molecular brushes c‐PHEMA‐g‐PS were coupled with the TEMPO‐PEO to afford the target macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) by SET‐NRC, and the efficiency is as high as 80~85%. All of the intermediates and final product were characterized with 1H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography in details © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号