首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using four basis bets, (6‐311G(d,p), 6‐31+G(d,p), 6‐31++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for the dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. In contrast with the above three dimers, for CH2O? CH4, because there is not a π‐type hydrogen bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD (T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

2.
The blue‐shifted and red‐shifted H‐bonds have been studied in complexes CH3CHO…HNO. At the MP2/6‐31G(d), MP2/6‐31+G(d,p) MP2/6‐311++G(d,p), B3LYP/6‐31G(d), B3LYP/6‐31+G(d,p) and B3LYP/6‐311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO…HNO are calculated by both standard and CP‐corrected methods, respectively. Complex A exhibits simultaneously red‐shifted C? H…O and blue‐shifted N? H…O H‐bonds. Complex B possesses simultaneously two blue‐shifted H‐bonds: C? H…O and N? H…O. From NBO analysis, it becomes evident that the red‐shifted C? H…O H‐bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue‐shifted C? H…O H‐bond is a result of conjunct C? H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue‐shifted N? H…O H‐bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N? H stretching frequency is observed because the rehybridization dominates the hyperconjugation. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

3.
Series of typical π‐type and pseudo‐π‐type halogen‐bonded complexes B ··· ClY and B ··· BrY and hydrogen‐bonded complex B ··· HY (B = C2H4, C2H2, and C3H6; Y = F, Cl, and Br) have been investigated using the MP2/aug‐cc‐pVDZ method. A striking parallelism was found in the geometries, vibrational frequencies, binding energies, and topological properties between B ··· XY and B ··· HY (X = Cl and Br). It has been found that the lengths of the weak bond d(X ··· π)/d(H ··· π), the frequencies of the weak bond ν(X ··· π)/ν(H ··· π), the frequency shifts Δν(X? Y)/Δν(H? Y), the electron densities at the bond critical point of the weak bonds ρc(X ··· π)/ρc(H ··· π), and the electron density changes Δρc(X? Y)/Δρc(H? Y) could be used as measures of the strengths of typical π‐type and pseudo‐π‐type halogen/hydrogen bonds. The typical π‐type and pseudo‐π‐type halogen bond and hydrogen bond are noncovalent interactions. For the same Y, the halogen bond strengths are in the order B ··· ClY < B ··· BrY. For the same X, the halogen bond strength decreases according to the sequence F > Cl > Br that is in agreement with the hydrogen bond strengths B ··· HF > B ··· HCl > B ··· HBr. All of these typical π‐type and pseudo‐π‐type hydrogen‐bonded and halogen‐bonded complexes have the “conflict‐type” structure. Contour maps of the Laplacian of π electron density indicate that the formation of B ··· XY halogen‐bonded complex and B ··· HY hydrogen‐bonded complex is very similar. Charge transfer is observed from B to XY/HY and both the dipolar polarization and the volume of the halogen atom or hydrogen atom decrease on B ··· XY/B ··· HY complex formation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
The conformational study of β‐thioaminoacrolein was performed at various theoretical levels, HF, B3LYP, and MP2 with 6‐311++G(d,p) basis set, and the equilibrium conformations were determined. To have more reliable energies, the total energies of all conformers were recomputed at high‐level ab initio methods, G2MP2, G3, and CBS‐QB3. According to these calculations, the intramolecular hydrogen bond is accepted as the origin of conformational preference in thialamine (TAA) and thiolimine groups. The hydrogen bond strength in various resonance‐assisted hydrogen bond systems was evaluated by HB energy, geometrical parameters, topological parameters, and charge transfers corresponding to orbital interactions. Furthermore, our results reveal that the TAA tautomer has extra stability with respect to the other tautomers. The population analyses of the possible conformations by NBO predict that the origin of this preference is mainly due to the π‐electron delocalization in framework of TAA forms, especially usual πC?C → π*C?S and Lp (N) → π*C?C charge transfers. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
Computational investigations by an ab initio molecular orbital method (HF and MP2) with the 6‐311+G(d,p) and 6‐311++G(2df, 2pd) basis sets on the tautomerism of three monochalcogenosilanoic acids CH3Si(?O)XH (X = S, Se, and Te) in the gas phase and a polar and aprotic solution tetrahydrofuran (THF) was undertaken. Calculated results show that the silanol forms CH3Si(?X)OH are much more stable than the silanone forms CH3Si(?O)XH in the gas‐phase, which is different from the monochalcogenocarboxylic acids, where the keto forms CH3C(?O)XH are dominant. This situation may be attributed to the fact that the Si? O and O? H single bonds in the silanol forms are stronger than the Si? X and X? H single bonds in the silanone forms, respectively, even though the Si?X (X = S, Se, and Te) double bonds are much weaker than the Si?O double bond. These results indicate that the stability of the monochalcogenosilanoic acid tautomers is not determined by the double bond energies, contrary to the earlier explanation based on the incorrect assumption that the Si?S double bond is stronger than the S?O double bond for the tautomeric equilibrium of RSi(?O)SH (R?H, F, Cl, CH3, OH, NH2) to shift towards the thione forms [RSi(?S)OH]. The binding with CH3OCH3 enhances the preference of the silanol form in the tautomeric equilibrium, and meanwhile significantly lowers the tautomeric barriers by more than 34 kJ/mol in THF solution. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

6.
Intramolecular hydrogen binding interactions in 8‐hydroxyquinoline, both in its zwitterionic tautomer and in the rotamer without the intramolecular hydrogen bond (IHB), have been computed using the B3LYP and MPW1K density functionals. The rotation of the O? H bond and intramolecular proton transfer reactions were studied theoretically. The following theory levels have been applied: B3LYP/6‐31G(d,p), B3LYP/6‐311++G(d,p), MPW1K/6‐311++G(d,p), and MPW1K/6‐311++G(2d,3p)//MPW1K/6‐311++G(d,p). Natural bond orbital (NBO) analysis has also been carried out. The effect of medium (benzene, chloroform, tetrahydrofuran, 1,2‐dichloroethane, acetone, water) was simulated using the self‐consistent reaction field (SCRF) method within the framework of the polarizable continuum model (PCM), at the MPW1K/6‐311++G(d,p) level. The evolution of geometry, relative energies, heights of rotation (around the O? H bond) and tautomerization barriers, IHB energies, and ΔG(solv) have been systematically investigated. The results obtained have shown the failure to neglect some changes of the above characteristics in polar media with respect to the gaseous phase. The series of stability of the forms under study in the gaseous phase remains the same in solution. Thus, in spite of the important role of the solvent electrostatic effects, the intrinsic stability of those species overcomes the solvent effects. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

7.
Non‐covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host–guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non‐covalent component (e.g. protein folding, recognition) and rational interference in such ‘living’ devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ‐hole and π‐hole interactions. A σ‐ or π‐hole can be seen as positive electrostatic potential on unpopulated σ* or π(*) orbitals, which are thus capable of interacting with some electron dense region. A σ‐hole is typically located along the vector of a covalent bond such as X?H or X?Hlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ‐holes can also be found along a covalent bond with chalcogen (X?Ch), pnictogen (X?Pn) and tetrel (X?Tr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π‐hole is typically located perpendicular to the molecular framework of diatomic π‐systems such as carbonyls, or conjugated π‐systems such as hexafluorobenzene. Anion–π and lone‐pair–π interactions are examples of named π‐hole interactions between conjugated π‐systems and anions or lone‐pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well‐established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ‐ and π‐hole interactions, present a selection of inquiries that utilise σ‐ and π‐holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid‐state structures.  相似文献   

8.
The cooperative enhancement of water binding to the antiparallel β‐sheet models has been studied by quantum chemical calculations at the MP2/6‐311++G**//MP2/6‐31G* level. The binding energies of the two antiparallel β‐sheet models consisting of two strands of diglypeptide are calculated by supermolecular approach. Then water molecules are gradually bonded to the diglypeptide by N? H···OH2 and C?O···HOH hydrogen bonds. Our calculation results indicated that the hydrogen bond length and the atom charge distribution are affected by the addition of H2O molecules. The binding energy of antiparallel diglypeptide β‐sheet models has a great improvement by the increasing of the hydrogen bond cooperativity and the more H2O molecules added the more cooperativity enhancement can be found. The orbital interactions are calculated by natural bond orbital analysis, and the results indicate that the cooperative enhancement is closely related to the orbital interaction. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
MP2/6‐311++G(d,p) calculations were performed on the NH4+ ??? (HCN)n and NH4+ ??? (N2)n clusters (n=1–8), and interactions within them were analyzed. It was found that for molecules of N2 and HCN, the N centers play the role of the Lewis bases, whereas the ammonium cation acts as the Lewis acid, as it is characterized by sites of positive electrostatic potential, that is, H atoms and the sites located at the N atom in the extension of the H?N bonds. Hence, the coordination number for the ammonium cation is eight, and two types of interactions of this cation with the Lewis base centers are possible: N?H ??? N hydrogen bonds and H?N ??? N interactions that are classified as σ‐hole bonds. Redistribution of the electronic charge resulting from complexation of the ammonium cation was analyzed. On the one hand, the interactions are similar, as they lead to electronic charge transfer from the Lewis base (HCN or N2 in this study) to NH4+. On the other hand, the hydrogen bond results in the accumulation of electronic charge on the N atom of the NH4+ ion, whereas the σ‐hole bond results in the depletion of the electronic charge on this atom. Quantum theory of “atoms in molecules” and the natural bond orbital method were applied to deepen the understanding of the nature of the interactions analyzed. Density functional theory/natural energy decomposition analysis was used to analyze the interactions of the ammonium ion with various types of Lewis bases. Different correlations between the geometrical, energetic, and topological parameters were found and discussed.  相似文献   

10.
The positive electrostatic potentials (ESP) outside the σ‐hole along the extension of O? P bond in O?PH3 and the negative ESP outside the nitrogen atom along the extension of the C? N bond in NCX could form the Group V σ‐hole interaction O?PH3?NCX. In this work, the complexes NCY?O?PH3?NCX and O?PH3?NCX?NCY (X, Y?F, Cl, Br) were designed to investigate the enhancing effects of Y?O and X?N halogen bonds on the P?N Group V σ‐hole interaction. With the addition of Y?O halogen bond, the V S, max values outside the σ‐hole region of O?PH3 becomes increasingly positive resulting in a stronger and more polarizable P?N interaction. With the addition of X?N halogen bond, the V S, min values outside the nitrogen atom of NCX becomes increasingly negative, also resulting in a stronger and more polarizable P?N interaction. The Y?O halogen bonds affect the σ‐hole region (decreased density region) outside the phosphorus atom more than the P?N internuclear region (increased density region outside the nitrogen atom), while it is contrary for the X?N halogen bonds. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
By counterpoise‐corrected optimization method, the interactions of BrCl with the first‐row hydrides (HF, H2O, NH3) have been investigated at the MP2/6–311++G(3d,3p) level. To understand that the X? Br‐type (X = F, O, N) structure is more stable than the corresponding hydrogen‐bonded structure in these complexes, the electronic properties were also investigated. Symmetry‐adapted perturbation theory (SAPT) analysis has been carried out to understand the nature of the weak hydrogen bond and X? Br‐type interactions. On the other hand, for the weak hydrogen‐bonded complexes and the X? Br‐type complexes charges transfer is well correlated with the total induction energies. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
The nonadditivity of methyl group in the single‐electron hydrogen bond of the methyl radical‐water complex has been studied with quantum chemical calculations at the UMP2/6‐311++G(2df,2p) level. The bond lengths and interaction energies have been calculated in the four complexes: CH3? H2O, CH3CH2? H2O, (CH3)2CH? H2O, and (CH3)3C? H2O. With regard to the radicals, tert‐butyl radical forms the strongest hydrogen bond, followed by iso‐propyl radical and then ethyl radical; methyl radical forms the weakest hydrogen bond. These properties exhibit an indication of nonadditivity of the methyl group in the single‐electron hydrogen bond. The degree of nonadditivity of the methyl group is generally proportional to the number of methyl group in the radical. The shortening of the C···H distance and increase of the binding energy in the (CH3)2CH? H2O and (CH3)3C? H2O complexes are less two and three times as much as those in the CH3CH2? H2O complex, respectively. The result suggests that the nonadditivity among methyl groups is negative. Natural bond orbital (NBO) and atom in molecules (AIM) analyses also support such conclusions. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
Intramolecular H‐atom transfer in model peptide‐type radicals was investigated with high‐level quantum‐chemistry calculations. Examination of 1,2‐, 1,3‐, 1,5‐, and 1,6[C ? N]‐H shifts, 1,4‐ and 1,7[C ? C]‐H shifts, and 1,4[N ? N]‐H shifts (Scheme 1), was carried out with a number of theoretical methods. In the first place, the performance of UB3‐LYP (with the 6‐31G(d), 6‐31G(2df,p), and 6‐311+G(d,p) basis sets) and UMP2 (with the 6‐31G(d) basis set) was assessed for the determination of radical geometries. We found that there is only a small basis‐set dependence for the UB3‐LYP structures, and geometries optimized with UB3‐LYP/6‐31G(d) are generally sufficient for use in conjunction with high‐level composite methods in the determination of improved H‐transfer thermochemistry. Methods assessed in this regard include the high‐level composite methods, G3(MP2)‐RAD, CBS‐QB3, and G3//B3‐LYP, as well as the density‐functional methods B3‐LYP, MPWB1K, and BMK in association with the 6‐31+G(d,p) and 6‐311++G(3df,3pd) basis sets. The high‐level methods give results that are close to one another, while the recently developed functionals MPWB1K and BMK provide cost‐effective alternatives. For the systems considered, the transformation of an N‐centered radical to a C‐centered radical is always exothermic (by 25 kJ ? mol?1 or more), and this can lead to quite modest barrier heights of less than 60 kJ ? mol?1 (specifically for 1,5[C ? N]‐H and 1,6[C ? N]‐H shifts). H‐Migration barriers appear to decrease as the ring size in the transition structure (TS) increases, with a lowering of the barrier being found, for example when moving from a rearrangement proceeding via a four‐membered‐ring TS (e.g., the 1,3[C ? N]‐H shift, CH3? C(O)? NH..CH2? C(O)? NH2) to a rearrangement proceeding via a six‐membered‐ring TS (e.g., the 1,5[C ? N]‐H shift, .NH? CH2? C(O)? NH? CH3 → NH2? CH2? C(O)? NH? CH2.).  相似文献   

14.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The effects of CC bond type (double or triple), substituent (H or methyl), and halogen (F and Cl) on three properties of hydrogen‐bonded complexes formed between unsaturated hydrocarbons and HX (X?F, Cl) are studied. The properties comprise hydrogen bond distances (RH), stabilization energies (SE), and frequency shifts (Δν). A 23 factorial design technique, along with ab initio (HF and MP2) and DFT (B3LYP and PBE1PBE) calculations, has been employed. All three responses are mainly affected by the halogen, and when it is changed from F to Cl, RH tends to increase, while SE tends to decrease. Surprisingly, the type of substituent is more important than the type of CC bond, for all three responses. Both effects tend to decrease RH. Significant interaction effects are obtained for the type of CC bond along with the type of substituent, and for the type of substituent along with the type of halogen. Both interaction effects are smaller than the main effects and also tend to decrease RH. The greatest SE values are obtained with PBE1 functional (BSSE + ZPE corrected values). Again, the next more important effect is due to the type of substituent, and the replacement of H by CH3 group tends to increase SE. The effect due to the CC bond type is not significant, at all computational levels. The only interaction effect that is significant for SE (corrected) and Δν is between factors 1 (CC bond type) and 2 (substituent), but only at HF and B3LYP levels, and it tends to increase both properties. As the halogen changes from F to Cl, Δν tends to decrease. In contrast, changing the substituent from H to CH3 leads to greater values of Δν. The effect of CC bond type is not significant at HF level, and when it is changed from double to triple Δν is decreased, at B3LYP and PBE1 levels. A suggestion as to how the results may point toward a better experimental detection of similar (π‐type) complexes is also given. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

16.
It has been demonstrated in several instances that the 0.001 a.u. (electrons per bohr3) isodensity mapped electrostatic surface potentials on the fluorines along the outermost extensions of the C? F covalent bonds in tetrafluoromethane (CF4) are entirely negative, they are thereby unable to engage in σhole bonding interactions with the negative sites on another molecules. In this study, we have attempted at resolving this controversy by performing various high‐level electronic structure calculations with Quadratic Configuration Integrals of Singles and Doubles QCISD(full), second‐order Møller–Plesset MP2(full), and 12 other Density Functional Theory (DFT) based functionals with and without dispersion corrections, all in conjunction with the 6–311++G(2d,2p) basis set. The results achieved with all the levels of theory utilized suggest that the fluorine's σholes in CF4 are positive regardless of the 0.001‐, 0.0015‐, and 0.002‐a.u. isodensity mapped electrostatic surfaces examined. Because of this specific quality, the fluorines in CF4 have displayed their capacities to form not only 1:1 clusters with the Lewis bases such as water (H2O), ammonia (NH3), formaldehyde (H2C?O), hydrogen fluoride (HF), and hydrogen cyanide (HCN), but also 1:2, 1:3, and 1:4 clusters with the latter three randomly chosen Lewis bases. Various topological and nontopological features obtained from applications of atoms in molecules, noncovalent interaction reduced‐density‐gradient and natural bond orbital analytical tools reveal that the N···F, O···F, and F···F long‐ranged interactions developed between the interacting monomers in H3N···FCF3, H2O···FCF3, and (Y? D)n=1–4···F4C (Y? D = H2C?O, HCN, and HF) are reminiscent of halogen bonding. The nonadditive cooperative and anticooperative energetic effects emerged on cluster formations are discussed in detail. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
A general comparison of fundamental distinctions between the FeO2+ and FeS2+ complexes in an identical cyanide or isocyanide ligand environment for methane hydroxylation has been probed computationally in this work in a series of hypothetical [FeIV(X)(CN)5]3?, [FeIV(X)(NC)5]3?, (X = O, S) complexes. We have detailed an analysis of the geometric and electronic structures using density functional theory calculations. In addition, their σ‐ and π‐mechanisms in C? H bond activation process have been described with the aid of the schematic molecular orbital diagram. From our theoretical results, it is shown that (a) the iron(IV)‐sulfido complex apparently is able to hydroxylate C? H bond of methane as good as the iron(IV)‐oxo species, (b) the O? CN, S? CN complexes have an inherent preference for the low‐spin state, while for the case of O? NC and S? NC in which S = 1 and S = 2 states are relatively close in energy, (c) each of the d block electron orbital plays an important role, which is not just spectator electron, and (d) in comparison to the cyanide and isocyanide ligand environment, we can see that the FeS2+ species prefer the cyanide ligand environment, while the FeO2+ species favor the isocyanide ligand environment. In addition, a remarkably good correlation of the σ‐/π‐mechanism for hydrogen abstraction from methane with the gap between the Fe‐dz2 (α) and C? H (α) pair as well as the Fe‐dxz/yz (β) and C? H (β) pair has been found. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
In this investigation, reaction channels of weakly bound complexes CO2…HF, CO2…HF…NH3, CO2…HF…H2O and CO2…HF…CH3OH systems were established at the B3LYP/6‐311++G(3df,2pd) level, using the Gaussian 98 program. The conformers of syn‐fluoroformic acid or syn‐fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH) were found to be more stable than the conformers of the related anti‐fluoroformic acid or anti‐fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH). However, the weakly bound complexes were found to be more stable than either the related syn‐ and anti‐type fluoroformic acid or the acid plus third molecule (NH3, H2O, or CH3OH) conformers. They decomposed into CO2 + HF, CO2 + NH4F, CO2 + H3OF or CO2 + (CH3)OH2F combined molecular systems. The weakly bound complexes have four reaction channels, each of which includes weakly bound complexes and related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti‐fluoroformic acid type structure (T13) is significantly larger than that of internal rotation (T23) between the syn‐ and anti‐FCO2H (or FCO2H…NH3, FCO2H…H2O, or FCO2H…CH3OH) structures. However, adding the third molecule NH3, H2O, or CH3OH can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O < NH3 < CH3OH. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

20.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号