首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface excitation parameter (SEP) is theoretically calculated for 12 semiconductors (GaN, GaP, GaSb, GaAs, InSb, InAs, InP, SiC, ZnSe, ZnS, Si and Ge) and for Ni (which is usually used as a reference in experiments) for electron energies between 300 eV and 3400 eV, and for angles between 0° and 70° to the surface normal. We use our previous definition of SEP, as the change in excitation probability, for an electron, caused by the presence of the surface in comparison with an electron moving the same distance in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS‐ε(k, ω)‐REELS software determining the energy‐differential inelastic electron scattering cross‐sections for reflection‐electron‐energy‐loss spectroscopy (REELS), and for which the only input is the dielectric function of the medium. By fitting to these SEP values as well as our previous ones, i.e. from 27 materials, including metals, oxides, polymers and semiconductors, we also establish a simple equation depending on the generalized plasmon energy and the energy band gap of the material which allows to estimate the SEP when the dielectric function is not available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The surface excitation parameter (SEP) is theoretically determined for different polymers, namely, polyethylene (PE), polystyrene (PS), polyacetylene (PA) and polymethyl methacrylate (PMMA), for electron energies between 300 and 5000 eV and for angles between 0 and 70o to the surface normal. We use our previous definition of SEP as the change in excitation probability of an electron caused by the presence of the surface in comparison with an electron moving in an infinite medium. The calculations are performed within the dielectric response theory by means of the QUEELS‐ε(k, ω)‐ REELS software determining the energy‐differential inelastic electron scattering cross‐sections for reflection‐electron‐energy‐loss spectroscopy (REELS). More precisely, the volume component for an infinite medium is subtracted from the calculated REELS cross‐section and in this way the surface excitation component of the cross‐section is determined and the SEP calculated. We find that the presence of an energy band gap reduces the SEP values compared to those for metals, and this decrease is larger for polymers with larger gaps. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Silver 3d x‐ray photoelectron spectroscopy (XPS) spectra were simulated with the Monte‐Carlo method using an effective energy‐loss function that was derived from a reflected electron energy‐loss spectroscopy (REELS) analysis based on an extended Landau approach. After confirming that Monte‐Carlo simulation based on the use of the effective energy‐loss function can successfully describe the experimental REELS spectrum and Ag 3d XPS spectrum, we applied Monte‐Carlo simulation to predict the angular distribution of Ag 3d x‐ray photoelectrons for different x‐ray incidence angles and different photoelectron take‐off angles. The experimental photoelectron emission microscope that we are constructing was confirmed as being close to the optimum configuration, in which the x‐ray incident angle as measured from the surface normal direction is 74° and the photoelectron take‐off angle is set normal to the surface. The depth distribution functions of the Ag 3d X‐ray photoelectrons for different energy windows suggest that the photoelectron emission microscope will exhibit greater surface sensitivity for narrower photoelectron energy windows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Effective energy‐loss functions for Al, Cu, Ag and Au were derived from the reflection electron energy‐loss spectroscopy (REELS) spectra for 1 keV electrons using extended Landau theory. Features of the obtained effective energy‐loss functions are close to those of optical surface energy‐loss functions, revealing the significant contribution of the low energy loss below a few tens of electron‐volts in the REELS spectrum for Cu, Ag and Au. The REELS spectra were reproduced using the newly derived effective energy‐loss functions, leading to the confirmation that this type of database of the effective energy‐loss function is very useful not only for more comprehensive understanding of the measured spectrum of surface electron spectroscopies but also for practical background subtraction in surface electron spectroscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Noble metal iridium is of great interest for high‐temperature applications and extreme environments. A high (110)‐oriented iridium coating was prepared by a double glow plasma process on the surface of niobium substrate. The morphology and composition of the coating were determined by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy, respectively. The phase of the coating was identified by X‐ray diffraction analysis. The misorientation angle distributions of grains on the surface and cross section of the coating were characterized by electron backscatter diffraction system. The uniform and pure iridium coating consisted of the submicrometer‐sized columnar grains with high‐angle boundary. The mean misorientation angles on the surface and cross section of the coating were 38.6° and 45.6°, respectively. After high‐temperature treatment, the coating was composed of equiaxed grains with distinct grain boundaries. Micropores appeared on the fracture surface of the coating. The micropore formation mechanism in Ir coating after high‐temperature treatment was investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Palladium supported on silica–chitosan hybrid material was prepared and characterized using thermogravimetric and differential thermogravimetric analyses, scanning electron microscopy, and Fourier transform infrared, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies. The prepared Pd‐CS@SiO2 catalyst (1 mol%) was used for the Suzuki–Miyaura cross‐coupling reaction of various aryl halides and arylboronic acids in 95% ethanol at 80 °C and the Mizoroki–Heck reaction in dimethylformamide at 110 °C using K2CO3 as a base. The developed catalyst is well suitable for the 3R approach (recoverable, robust, recyclable) for cross‐coupling reactions without appreciable loss of its activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Novel low surface free energy materials of polybenzoxazine/organically modified silicate nanocomposites have been prepared and characterized. The CPC (cetylpyridinium chloride)/clay10%/poly(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) (PP‐a) material possesses an extremely low surface free energy (12.7 mJ · m−2) after 4 h curing at 200 °C, which is even lower than that of poly(tetrafluoroethylene) (22.0 mJ · m−2) calculated on the basis of the three‐liquid geometric method. X‐Ray photoelectron spectroscopy (XPS) shows a higher silicon content on the surface of the nanocomposites than for an average composition, which implies that the clay is more preferentially enriched on the outermost layer. In addition, the glass transition temperature (Tg) of the polybenzoxazine (PP‐a) in the nanocomposite is 22.6 °C higher and its thermal decomposition temperature is also 31.5 °C higher than the pure PP‐a. This finding provides a simple way to prepare low surface energy and high thermal stability materials.

  相似文献   


10.
A method of estimation is proposed for determining the effective depth of surface excitation. For this, the effective differential inverse inelastic mean free path (DIIMFP) is presumed to be represented as a linear combination of theoretical DIIMFPs for surface and bulk excitation, which are derived by the use of optical dielectric constants. The effective DIIMFP in the approach is derived by a reflected electron energy‐loss spectroscopy analysis based on the extended Landau approach. The present analysis for 1 kV electrons has led to a simple estimation of the effective depth for surface excitations (~14.5 Å for Al and ~21 Å for Ag), agreeing well with an estimation given by υ/ω s, where υ and ω s are the velocity of the primary electrons and the average surface plasmon frequency, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
《先进技术聚合物》2018,29(7):2064-2071
A new cross‐linked system of silicone rubber (SR) was obtained from silicone‐polyurea block copolymers that was synthesized with aminopropyl terminated polydimethylsiloxane and (4‐isocyanatocyclohexyl)‐methane. SR possessed self‐reinforced and physical cross‐linked structure. It had better mechanical properties that the hardness, the tensile strength, and the elongation at break could reach 65 Shore A, 3.78 MPa, and 458% with the polyurea segment content ranging from 2.01% to 9.13% by weight . The hydrogen bond that led to the physical cross‐linked structure was proved byFourier transform infrared spectroscopy. The microphase separated structure that caused the self‐reinforcement was illustrated by scanning electron microscopy, X‐ray diffraction analysis, and dynamic mechanical analysis. Fourier transform infrared spectroscopy results showed the hydrogen bond formation between the polyurea units. Scanning electron microscopy, dynamic mechanical analysis, and X‐ray diffraction analysis results proved the microphase separation existed between polyurea units and ―Si―O―Si― chains. The increase of polyurea contents enhanced the binding of hydrogen bond and improved the extent of microphase separation. Accordingly, it decreased the thermal properties and lowered the glass transition temperature (Tg) from −108°C to −114°C. Also, the increase of polyurea contents increased the hydrophobicity of SR that the surface free energy could reach to −24.81 mN/m.  相似文献   

12.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Amendments have been made to International Standards Organization (ISO) 18115‐1:2010 extending the number of terms and, in a few cases where usage has changed, incorporating revisions. Part 1 covers 600 terms used in Auger electron spectroscopy, elastic peak electron spectroscopy, reflected electron energy loss spectroscopy, SIMS, UPS, XPS, etc. as well as 75 acronyms. The terms cover words or phrases used in describing the samples, instruments and theoretical concepts involved in surface chemical analysis. © 2014 Crown copyright. Surface and Interface Analysis © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H‐ and 13C NMR chemical shift values of the title compound in the ground state have been calculated using the Hartree‐Fock (HF) and density functional theory (DFT) methods with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters and the theoretical vibrational frequencies, and 1H‐ and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained by semiempirical (AM1) calculations with respect to the selected torsion angle, which was varied from ?180° to +180° in steps of 10°. The energetic behavior of the title compound in solvent media was examined using the B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). The results obtained with these methods reveal that the PCM method provided more stable structure than Qnsager's method. By using TD‐DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD‐DFT method and the experimental one is determined. The predicted nonlinear optical properties of the title compound are much greater than ones of urea. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, NBO analysis and thermodynamic properties of the title compound were investigated using theoretical calculations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

15.
The potential energy surface (PES) for the CHF2CHO molecule in the excited S1 state is calculated by the CASSCF method. The features of the 1‐ and 2‐D cross‐sections of PES are considered in comparison with those of the relative molecules. The vibrational frequencies are calculated in harmonic approximation and the vibrational energy levels for the inversion motion of the carbonyl fragment CCHaO and for the torsion motion of the CHF2‐top are calculated in anharmonic approximation by the 1‐ and 2‐D variational methods. The calculated data are compared with the experimental ones. The problems of the experimental data interpretation are considered. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

16.
A series of four π‐conjugated carbazole‐alt‐benzothiadiazole copolymers (PCBT) were prepared by Suzuki cross‐coupling reaction between synthesized dibromocarbazoles as electron‐rich subunits and 4,7‐bis(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)?2,1,3‐benzothiadiazole as electron‐deficient subunits. The subunits were directly linked through 2,7‐ or 3,6‐ positions of the carbazole. In addition, the carbazole monomers have been N‐substituted by a branched or a linear side‐chain. The chemical structure of the copolymers and their precursors was confirmed by NMR and IR spectroscopies, and their molar masses were estimated by SEC. Thermal analysis under N2 atmosphere showed no weight loss below 329°C, and no glass transition was observed in between 0 and 250°C. The band gaps of all PCBTs evaluated by optical spectroscopies and by cyclic voltammetry analysis were consistent with expectations and ranged between 2.2 and 2.3 eV. Finally, 2,7 and 3,6 linkages were shown to influence optical properties of PCBTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2059–2068  相似文献   

17.
Growth of Ag islands under ultra‐high vacuum condition on air‐oxidized Si(110)‐(5 × 1) surfaces has been investigated by in situ reflection high energy electron diffraction and ex situ scanning electron microscopy and cross‐sectional transmission electron microscopy. A thin oxide is formed on Si via exposure of the clean Si(110)‐(5 × 1) surface to air. The oxide layer has a short range order. Deposition of Ag at different thicknesses and at different substrate temperatures reveal that the crystalline qualities of the Ag film are almost independent of the thickness of the Ag layer and depend only on the substrate temperature. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher temperatures. For deposition at 550 °C sharp spots in the reflection high energy electron diffraction pattern corresponding to an epitaxial orientation with the underlying Si substrate are observed. The presence of a short range order on the oxidized surface apparently influences the crystallographic orientation of the Ag islands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Quantitative surface analysis requires knowledge of surface excitations by electrons. These excitations are characterized by the surface excitation parameter (SEP) which represents the surface excitation probability while an electron moves across a solid surface. In this work, a systematic calculation of a SEP database has been performed for 22 materials, including metals, oxides and semiconductors, for electron energies between 100 eV and 5000 eV, and for angles α of incidence/emission between 0.5o and 89.5o with respect to the surface normal. Surface excitations are considered for both sides of a solid–vacuum interface when an electron is incident on or emitted from a surface. These SEPs represent not only the appearance of surface excitations but also the inhibition of bulk excitations. Four common SEP formulas are evaluated, and we present best‐fit parameters for the most satisfactory formula. SEP can then be readily determined for about 22 materials and various energies and electron incidence or emission angles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A novel benzoxazine monomer containing a benzoxazole group was synthesized using a nonsolvent method and then named DAROH‐a. The structure of DAROH‐a was confirmed by FTIR, 1H NMR, elemental analysis, and mass spectrometry. The curing reaction activation energy was calculated at 140 kJ/mol. Its corresponding crosslinked polybenzoxazines, poly(DAROH‐a), displayed a higher glass transition temperature at 402 °C, a 9% weight loss at the said temperature, and a high char yield of 42 wt % (800 °C, in nitrogen). Moreover, the dielectric constants of poly(DAROH‐a) were low and changed only slightly at different temperatures. Furthermore, the dielectric constants and dielectric loss of poly(DAROH‐a) at the same frequency barely changed from room temperature to 150 °C. The photophysical properties of poly(DAROH‐a) film were also investigated. Poly(DAROH‐a) showed an absorption peak at 280 nm. The photoluminescent emission spectrum of poly(DAROH‐a) film displayed predominant emission peaks at 521 nm. It might have potential application as high‐performance materials because of its excellent dielectric constants stability and thermal stability under high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Rolling is known to alter the surface properties of aluminium alloys and to introduce disturbed near‐surface microcrystalline layers. The near‐surfaces of mostly higher alloyed materials were investigated by various techniques, often combined with a study of their electrochemical behaviour. Cross‐sectional transmission electron microscopy (TEM), after ion milling or ultramicrotomy, indicated the presence of disturbed layers characterized by a refined grain structure, rolled‐in oxide particles and a fine distribution of intermetallics. Those rolled‐in oxide particles reduce the total reflectance of rolled Al alloys. Furthermore, various depth profiling techniques, such as AES, XPS, SIMS and qualitative glow discharge optical emission spectroscopy (GD‐OES) have been used to study the in‐depth behaviour of specific elements of rolled Al alloys. Here, the surface and near‐surface of AlMg0.5 (a commercially pure rolled Al alloy with addition of 0.5 wt.% Mg) after hot and cold rolling, and with and without additional annealing is studied with complementary analytical techniques. Focused ion beam thinning is introduced as a new method for preparing cross‐sectional TEM specimens of Al surfaces. Analytical cross‐sectional TEM is used to investigate the microstructure and composition. Measuring the total reflectance of progressively etched samples is used as an optical depth profiling method to derive the thickness of disturbed near‐surface layers. Quantitative r.f. GD‐OES depth profiling is introduced to study the in‐depth behaviour of alloying elements, as well as the incorporation of impurity elements within the disturbed layer. The GD‐OES depth profiles, total reflectance and cross‐sectional TEM analyses are correlated with SEM/energy‐dispersive x‐ray observations in GD‐OES craters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号