首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
利用密度泛函(DFT)和自然键轨道理论(NBO)及高级电子耦合簇[CCSD(T)]和电子密度拓扑(AIM)方法,对单重态和三重态CH2与CH2CO反应的微观机理进行了研究.在B3LYP/6-311+G(d,p)水平上优化了反应通道各驻点的几何构型.在CCSD(T)/6-311+G(d,p)水平上计算了各物种的单点能量,并对总能量进行了校正.计算表明,单重态CH2与CH2CO的C-H键可发生插入反应,与C=C、C=O可发生加成反应,存在三条反应通道,产物为CO和C2H4,从能量变化和反应速控步骤能垒两方面考虑,反应II更容易发生.对反应通道中的关键点进行了自然键轨道及电子密度拓扑分析.三重态CH2与CH2CO的反应存在三条反应通道,一条是与C-H键的插入反应,另一条是三重态CH2与C=C发生加成反应,产物为CO和三重态C2H4,通道II势垒较低,更容易发生.最后一条涉及双自由基的反应活化能最大,最难发生.  相似文献   

2.
HCCO与CH(2Π)双自由基反应微观动力学的理论研究   总被引:3,自引:0,他引:3  
用量子化学密度泛函理论的UB3LYP/6-311+G**方法和高级电子相关的UQCISD(T)/6-311+G**方法研究了HCCO与CH(2Π)自由基反应的微观机理. 采用双水平直接动力学方法IVTST-M和正则变分过渡态理论研究了在1 000~2 500 K温度范围内反应的速率常数. 结果表明, HCCO与CH(2Π)双自由基反应过程中存在3个反应通道, 生成产物为C2H2+CO. 通道2为主要反应路径, 通道1也占一定的比例. 在所研究的温度范围内, 速率常数计算的变分效果均较小, 反应为放热反应.  相似文献   

3.
CH2与 O2的反应是不饱和碳氢化合物燃烧过程中的一个十分重要的反应 .CH2(基态,三重态)与 O2反应的实验研究工作已有不少报导 [1- 5],其主要产物有两 组 :H2O+ CO和 CO2+ H2,这些产物表明反应在反应体系的单重态位能面上发生 .至今还未见到关于 CH2+ O2反应机理的完整的理论研究报导 .本文用 CASSCF方法详细研究了 CH2+ O2反应的机理,给出从反应物至两组不同最终产物的完整的反应途经的描写 .1计算方法   计算使用量子化学高斯 98 W软件 .用从头算 CASSCF(8,8)/6-31G(d,p)方法在 CH2+ O2单重态位能面上以优化…  相似文献   

4.
碳前驱体CH3ArCH2NH2热解反应的热力学和动力学DFT研究   总被引:1,自引:0,他引:1  
在实验研究基础上 ,通过量子化学理论计算对碳前驱体 CH3 Ar CH2 NH2 的热裂解机理作了进一步的研究 .利用 Gaussian98程序包中 AM1方法及 DFT UB3 LYP/3 -2 1 G*方法 ,对化合物 5种可能热裂解路径的热力学和动力学计算结果表明 ,CH3 Ar CH2 NH2 热裂解的主反应路径为生成自由基 CH3 Ar CH2 ·和 NH2 · ,其主反应路径 AM1计算的活化能 Ea=2 3 0 .78k J/mol,DFT计算的活化能 Ea=3 2 1 .1 8k J/mol;比较键焓计算的数据与相应的实验数据 ,发现 DFT计算结果与实验结果吻合得较好 ;通过分析优化的反应物及产物自由基的部分结构参数 ,了解了理论支持主反应的原因 ;计算的产物自由基的空间构型表明主反应路径生成的产物自由基相互间若进行稠环缩合反应 ,将获得分子平面取向性很好的稠环芳烃产物  相似文献   

5.
用量子化学密度泛函理论的UB3LY/6-311 G**方法和高级电子相关的UQCISD(T)/6-311 G**方法研究了HCCO与CH(^2∏)自由基反应的微观机理.采用双水平直接动力学方法IVTST-M和正则变分过渡态理论研究了在l000~2500K温度范围内反应的速率常数.结果表明,HCCO与CH(^2∏)双自由基反应过程中存在3个反应通道。生成产物为C2H2 CO.通道2为主要反应路径,通道1也占一定的比例.在所研究的温度范围内,速率常数计算的变分效果均较小,反应为放热反应.  相似文献   

6.
采用广义梯度近似(GGA)的密度泛函理论(DFT)(DFT-GGA)对Co-Pd催化剂上CH4/CO2两步法合成乙酸反应中CO2与金属表面物种M—H(M=Co,Pd)和Pd—CH3的插入反应机理进行了研究, 给出了CO2与M—H和Pd—CH3的插入反应机理. 计算结果表明, 在CO2与M—H和Pd—CH3相互作用的4个反应路径中, 反应以CO2与Co—H作用生成产物HCOO—Co为动力学优先路径, 但由于HCOO以双齿形式与金属Co结合, 其结合能较大, 导致HCOO在金属表面不易脱附, 故较难形成甲酸; 反应生成H3CCOO—Pd产物路径次之, H3CCOO和Pd之间结合能较小, H3CCOO容易脱附形成主产物乙酸; 生成H3COOC—Pd反应为动力学最不利路径, 故甲酸甲酯为动力学禁阻产物; 计算结果与实验结果吻合得很好.  相似文献   

7.
氧负离子与乙烯自由基反应的理论研究   总被引:1,自引:0,他引:1  
王新磊  于锋  谢丹  刘世林  周晓国 《化学学报》2008,66(22):2499-2506
在G3MP2B3理论水平下研究了氧负离子与乙烯自由基的反应机理. 反应入口势能面的刚性扫描显示: 对于不同的初始反应取向, 体系存在3种不同的反应机理, 分别对应直接脱水、插入反应和直接键合成中间体通道. 其中, 通过插入反应形成的富能中间体[CH2=C—OH]-及键合中间体[CH2=CHO]-都可以进一步经异构化和解离生成其它各种可能产物, 如C2H-+H2O, OH-+CH2C和 +CO产物通道. 基于计算得到的反应势垒的相对高度, 直接脱水反应显然是该反应体系最主要的产物通道, 同时我们还结合Mulliken电荷布居分析研究了其中涉及的电子交换过程. 由此, 计算结果证实了以往OH-与C2H2反应的实验研究结果. 此外, 还对比了该反应体系、氧原子与乙烯自由基、氧负离子与乙烯分子三个反应的不同机理.  相似文献   

8.
在CBS-QB3水平上研究了CH3CN 和·OH反应的势能面, 其中包括两个中间体和9个反应过渡态. 分别给出了各主要物质的稳定构型、相对能量及各反应路径的能垒. 根据计算的CBS-QB3势能面, 探讨了CH3CN+·OH反应机理. 计算结果表明, 生成产物P1(·CH2CN+H2O)的反应路径在整个反应体系中占主要地位. 运用过渡态理论对产物通道P1(·CH2CN+H2O)的速率常数k1(cm3·molecule-1·s-1)进行了计算. 预测了k1(cm3·molecule-1·s-1)在250-3000 K温度范围内的速率常数表达式为k1(250-3000 K)=2.06×10-20T3.045exp(-780.00/T). 通过与已有的实验值进行对比得出, 在实验所测定的250-320 K 范围内, 计算得到的k1的数值与已有的实验值比较吻合. 由初始反应物生成产物P1 (·CH2CN+H2O)只需要克服一个14.2 kJ·mol-1的能垒. 而产物·CH2CN+H2O生成后要重新回到初始反应物CH3CN+·OH, 则需要克服一个高达111.2 kJ·mol-1的能垒,这就表明一旦产物P1生成后就很难再回到初始反应物.  相似文献   

9.
H+CH2CO反应机理的G2计算   总被引:2,自引:0,他引:2  
分别在UQCISD/6-311G(d,p)和G2理论计算水平上,对CH2CO和H反应可能存在的四条反应通道进行了研究,详细分析了每个通道的反应机理;通过振动分析的虚频数和内禀反应坐标(IRC)计算,确认了反应涉及的每一个过渡态.通过反应位能剖面的比较,发现经过一个中间体生成CH3+CO的一条途径是主反应通道,该通道是个放热反应,总焓变为-146.07 kJ•mol-1,速控步骤的位垒为55.09 kJ•mol-1.理论计算结果较好地解释了实验观察到的主要产物和副产物并存的现象。  相似文献   

10.
在QCISD(T)/6-311G(2df,p)//B3LYP/6-311G(d,p)水平上对自由基反应C2H3^. OH^.进行了计算,结果表明,经过缔合、多步H转移、CH3转移和离解等复杂过程,最终要得到8种产物(P1-P8),茯中产物P2(H2CCO H2)和P6(CH3CO^. H^.)是主要产物。本文得到的CH2CHOH(1或1‘),CH3CHO(2)和CH3COH(3)之间的过渡态TS1/2,TS1‘/3和TS2/3的能量顺序与Wesdemiotis等的实验推测相反,而与Smith等的计算结果一致。  相似文献   

11.
CH3+HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
在6-311++G**基组水平上,采用UMP2方法对自由基CH3与HNCO反应机理进行了研究,全参数优化了反应通道上各驻点的几何构型.结果表明, 自由基CH3与HNCO分子间反应有三条反应通道,第一为CH3与HNCO分子间经过生成一个稳定化能为4.56 kJ•mol-1的含氢键的分子复合物M后,经过渡态TS生成另一个产物复合物M′,然后分解为甲烷和NCO自由基;第二是CH3与HNCO分子间通过生成稳定反式中间体trans-int,其经过渡态trans-ts分解成产物CH3NH和CO;第三是CH3与HNCO分子间通过生成稳定顺式中间体cis-int,其经过渡态cis-ts分解成产物CH3NH和CO.比较三条反应通道的反应活化能,表明CH3与HNCO反应较易生成CH4+NCO.  相似文献   

12.
1CH2+N2O反应的势能面   总被引:2,自引:0,他引:2  
利用密度泛函理论(B3LYP)计算了1CH2+N2O反应的反应物、中间体、过渡态及产物 的几何构型.进而用从头算方法(QCISD(T))计算了单点能量.由此描绘了反应的势能面, 确定了反应的最终产物通道为N2+H2CO和NO+HCN+H.后者比前者有更大的分支比.N2、H2CO 、NO、HCN的存在有待于实验检测.作者认为,反应在室温下是加成-消除机理,而在高温下 可以通过直接取代的机理获得N2+H2CO.  相似文献   

13.
碳前驱体CH3ArCH2NH2热解反应的热力学和动力学DFT研究   总被引:2,自引:0,他引:2  
在实验研究基础上,通过量子化学理论计算对碳前驱体CH3ArCH2NH2的热裂解机理作了进一步的研究.利用Gaussian98程序包中AM1方法及DFTUB3LYP/3-21G*方法,对化合物5种可能热裂解路径的热力学和动力学计算结果表明,CH3ArCH2NH2热裂解的主反应路径为生成自由基CH3ArCH2*和NH2*,其主反应路径AM1计算的活化能Ea=230.78kJ/mol,DFT计算的活化能Ea=321.18kJ/mol;比较键焓计算的数据与相应的实验数据,发现DFT计算结果与实验结果吻合得较好;通过分析优化的反应物及产物自由基的部分结构参数,了解了理论支持主反应的原因;计算的产物自由基的空间构型表明主反应路径生成的产物自由基相互间若进行稠环缩合反应,将获得分子平面取向性很好的稠环芳烃产物.  相似文献   

14.
采用B3LYP和QCISD(T)方法计算得到了CN自由基与乙烯酮(CH2CO)双分子单碰撞反应势能面.结果表明,CN自由基与CH2CO的单碰撞反应存在三个最可能的反应通道.一是CN中C原子进攻CH2CO中亚甲基碳原子生成中间体NCCH2CO,然后中间体NCCH2CO中和—CO基团相接的C—C键断裂得到产物CH2CN CO;二是CN与CH2CO分子直接加成生成中间体CH2C(O)CN,然后这个中间体通过—CN基团的转移异构化到中间体NCCH2CO,进而通过第一条通道得到产物CH2CN CO;三是CN自由基直接从CH2CO中夺氢的氢迁移反应,由于存在一个15.44 kJ/mol的反应势垒及产物的能量较高,这个通道在整体反应动力学里是可以忽略的.目前的理论计算结果与实验结果符合,并有效地解释了此反应的具体机理过程.  相似文献   

15.
郭建忠  侯昭胤  郑小明 《催化学报》2010,31(9):1115-1121
 在流化床反应器中, 考察了 Ni/SiO2 催化剂上 CH4 或 CH4-C3H8 临氧 CO2 重整 (自热重整) 制合成气反应性能. 结果表明, 在 CH4-C3H8 混合气自热重整反应中, Ni 粒径较小催化剂的活性和抗积炭性能较高, CH4 和 CO2 转化率分别达 75.5% 和 72.6%. C3H8 比 CH4 更易解离及被氧化, 部分 C3H8 解离出来的中间产物 CHx 物种可与吸附 H 结合为 CH4, 因而降低了 CH4 的表观转化率; CHx 也可与吸附的 CO2 物种反应生成 H2 与 CO, 从而促进了 CO2 的转化.  相似文献   

16.
在G3(MP2)//B3LYP/6-311 G(d,p)水平上,对CH3S自由基与CO气相反应的微观机理进行了理论研究.结果表明:该反应共存在3个反应通道,产物分别为CH3 OCS,CH2S HCO和CH2S HOC.由于形成产物CH3 OCS的活化势垒较低,因此为主要反应通道,这与实验观察到的结果是一致的.  相似文献   

17.
在1.013×10^5Pa,(298±2)K及O2-N2气氛下,研究了羟基自由基·OH引发的甲烷光化学反应体系中过氧甲基自由基CH3OO·自身复合反应。反应物和产物采用长光路Fourier红外光谱(LP-FTIR)和高效液相色谱(HPLC)测定。证实产物中有甲基过氧化氢(CH3OOH,MHP)和过氧甲醚(CH3OOCH3,DMP)存在并首次在该体系中发现了羟甲基过氧化氢(HOCH2OOH,HMHP).HMHP的检出表明,CH3OO·自身复合的可能途径之一生成了Criegee中间体过氧次甲基双自由基·CH2OO·,采用G2,G2(MP2)和G2(ful)方法对一些反应的标准焓变和标准Gibbs自由能变化进行了理论计算。结果表明CH3OO·自身复合生成·CH2OO·及·CH2OO·与H2O反应生成HMHP的途径在热力学上是可能的。  相似文献   

18.
用量子化学从头算法对氧原子与CH2 Cl自由基的反应进行了研究 ,采用G2MP2方法计算了势能面上各驻点的构型参数、振动频率和能量 .给出了O( 3 P)与CH2 Cl反应的明确机理 .反应首先形成富能中间体OCH2 Cl,而后经各种复杂的解离或异构化途径生成产物 .计算的各个通道的反应热与实验结果相符 ,预测H CHClO和Cl CH2 O是反应的主要通道 .根据从头算的结果 ,用过渡态理论计算了反应的总速率常数 .反应速率常数与压力无关 ,在低温下有弱的负温度效应 .计算值与实验值符合很好 .  相似文献   

19.
·C2H3+O2→HC·O+H2CO 的密度泛函理论研究   总被引:2,自引:7,他引:2  
应用密度泛函理论研究了@C2H3+O2→HC@O+H2CO的反应机理.在DFT(B3LYP/6-31G*)水平上对反应过程中所有反应物、中间体、过渡态和产物的几何构型进行优化,通过频率振动分析确认中间体和过渡态.计算IRC反应路径的能量,分析了中间体的异构化过程和各主要原子的自旋密度.  相似文献   

20.
李春林  伏义路  屠兢 《催化学报》2004,25(6):450-454
 采用水热合成-负载法制备了Ni/Ce-Zr-Al-Ox催化剂,测试了该催化剂上CO2重整CH4反应的活性和稳定性,并考察了添加少量水蒸气对CO2重整CH4反应的影响. 结果表明,在不含水蒸气的反应气中反应198 h后CH4和CO2的转化率分别为89%和98%,H2/CO摩尔比约为1.00,且没有任何失活. 添加3.2%的水蒸气后,CH4转化率提高到94%,CO2转化率不变,H2/CO摩尔比约提高0.06,同时稳定性也很好. 计算结果表明,添加少量水蒸气后,CO2重整CH4被促进,逆水煤气反应被抑制,而水蒸气重整CH4没有明显变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号