首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic properties of SiC nanotubes (SiCNTs) under external transverse electric field were investigated using density functional theory. The pristine SiCNTs were semiconductors with band-gaps of 2.03, 2.17 and 2.25 eV for (6,6), (8,8) and (10,10) SiCNTs, respectively. It was found the band gaps was reduced with the external transverse electric filed applied. The (8,8) and (10,10) SiCNTs changed from semiconductor to metals as the intensity of electric field reached 0.7 and 0.5 V/Å. The results indicate that the electronic properties of SiCNTs can be tuned by the transvers electric field with integrality of the nanotubes.  相似文献   

2.
The electronic and thermal properties of AB-stacked bilayer graphene nanoribbons subject to the influences of a transverse electric field are investigated theoretically, including their transport properties. The dispersion relations are found to exhibit a rich dependence on the interlayer interactions, the field strength, and the geometry of the layers. The interlayer coupling will modify the subband curvature, create additional band-edge states, change the subband spacing or energy gap, and separate the partial flat bands. The bandstructures will be symmetric or asymmetric about the Fermi energy for monolayer or bilayer nanoribbons, respectively. The inclusion of a transverse electric field will further alter the bandstructures and lift the degeneracy of the partial flat bands. The chemical-potential-dependent electrical and thermal conductance exhibit a stepwise increase behavior. Variations in the electronic structures with field strength will be reflected in the electrical and thermal conductance. Prominent peaks, as well as single-shoulder and multi-shoulder structures in the electrical and thermal conductance are predicted when varying the electric field strength. The features of the conductance are found to be strongly dependent on the field strength, the geometry, interlayer interactions and temperature.  相似文献   

3.
The electronic and transport properties of nanotube-ribbon hybrids subject to the influences of a transverse electric field are investigated theoretically. The energy dispersion relations are found to exhibit rich dependence on the nanotube-ribbon interactions, the field strength, and the geometry of the hybrids. The nanotube-ribbon coupling will modify the subband curvature, create additional band-edge states, and change the subband spacing or energy gap. The bandstructures are asymmetric and symmetric about the Fermi energy when the interactions are turned on and off, respectively. The inclusion of a transverse electric field will further alter the bandstructures and lift the degeneracy of the partial flat bands in hybrid (IV). The chemical-potential-dependent electrical and thermal conductance exhibit a stepwise increase behavior. Variations in the electronic structures with field strength will be reflected in the electrical and thermal conductance. Prominent peaks, as well as single-shoulder and multi-shoulder structures in the electrical and thermal conductance are predicted when varying the electric field strength and the nanotube location. The features of the conductance are found to be strongly dependent on the field strength, the geometry and the temperature.  相似文献   

4.
The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin--orbit coupling have been studied numerically. It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spin--orbit coupling is presented. The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system. A transversely applied electric field does not influence the characteristic behaviour of charge- and spin-dependent properties.  相似文献   

5.
We formulate and justify several proposals utilizing unique electronic properties of carbon nanotubes for a broad range of applications to THz optoelectronics, including THz generation by hot electrons in quasi-metallic nanotubes, frequency multiplication in chiral-nanotube-based superlattices controlled by a transverse electric field, and THz radiation detection and emission by armchair nanotubes in a strong magnetic field.  相似文献   

6.
In this paper, we investigate the electronic structure of both armchair and zigzag α-graphyne nanoribbons. We use a simple tight binding model to study the variation of the electronic band gap in α-graphyne nanoribbon. The effects of ribbon width, transverse electric field and edge shape on the electronic structure have been studied. Our results show that in the absence of external electric field, zigzag α-graphyne nanoribbons are semimetal and the electronic band gap in armchair α-graphyne nanoribbon oscillates and decreases with ribbon's width. By applying an external electric field the band gap in the electronic structure of zigzag α-graphyne nanoribbon opens and oscillates with ribbon width and electric field magnitude. Also the band gap of armchair α-graphyne nanoribbon decreases in low electric field, but it has an oscillatory growth behavior for high strength of external electric field.  相似文献   

7.
In this work, we use the tight-binding model to study the low-energy electronic properties of telescoping double-walled carbon nanotubes subject to the influences of a transverse electric field and a parallel magnetic field. The state energy and energy spacings are found to oscillate significantly with the overlapping length. External fields would modify the state energies, alter the energy gaps, and destroy the state degeneracy. Complete energy gap modulations can be accomplished either by varying the overlapping length, or by applying an electric field or a magnetic field. The variations of state energies with the external fields will be directly reflected in the density of states. The numbers, heights, and frequencies of the density of states peaks are strongly dependent on the external fields.  相似文献   

8.
9.
We investigate the electronic properties of graphene nanoribbons with attachment of bearded bonds as a model of edge modification. The main effect of the addition of the beards is the appearance of additional energy subbands. The originally gapless armchair graphene nanoribbons become semiconducting. On the other hand, the originally semiconducting armchair graphene nanoribbons may or may not change to gapless systems depending on the width. With the inclusion of a transverse electric field, the band structures of bearded graphene nanoribbons are further altered. An electric field creates additional band-edge states, and changes the subband curvatures and spacings. Furthermore, the energy band symmetry about the chemical potential is lifted by the field. With varying width, the bandgap demonstrates a declining zigzag behavior, and touches the zero value regularly. Modifications in the electronic structure are reflected in the density of states. The numbers and energies of the density of state divergent peaks are found to be strongly dependent on the geometry and the electric field strength. The beard also causes electron transfer among different atoms, and alters the probability distributions. In addition, the electron transfers are modified by the electric field. Finally, the field introduces more zero values in the probability distributions, and removes their left–right symmetry.  相似文献   

10.
Longitudinal and transverse high-frequency conductivities of a graphene superlattice placed in an additional dc electric field are calculated. It is shown that in a sufficiently strong transverse field, the dependence of the longitudinal high-frequency conductivity of the superlattice on the ac field frequency changes. This effect is explained by the nonadditivity of the electronic spectrum of the investigated structure.  相似文献   

11.
We apply first-principles calculations to investigate the interplay between electronic and magnetic properties of carbon nanotubes with line defects. We consider three types of defects: lines of C--O--C epoxy groups, and defects resulting from the substitution of the oxygen atoms by CH2 or C2H4 divalent radicals. We find that the line defects behave as pairs of coupled graphene edge states, and a variety of electronic and magnetic ground states is predicted as a function of defect type, nanotube diameter, and a possibly applied transverse electric field.  相似文献   

12.
R. Majidi  A.R. Karami 《Molecular physics》2013,111(21):3194-3199
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.  相似文献   

13.
覃觅觅  侯慎勇 《强激光与粒子束》2018,30(11):113003-1-113003-5
同轴回旋管中不可避免发生内导体倾斜。主要研究了内导体倾斜对特征根、Q值、谐振频率、横向电场、模式竞争和电子效率的影响,并以170 GHz TE31, 12内开槽同轴回旋管作为实例对内导体倾斜理论进行验证。结果表明,特征根和Q值随倾角θ增大而略微增加。在0~0.5°范围内,当θ稍微增大时,电子互作用效率稍微减少。如果θ增加到1.3°,则由于模式竞争严重,且横向电场畸变严重,电子互作用效率降低到只有5%。受内导体倾斜的影响, 随着θ增加,无论热腔还是冷腔,谐振频率都稍微增大。  相似文献   

14.
We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.  相似文献   

15.
The effects of transverse electric field on the electronic structures, exciton states and excitonic absorption spectra in a cylindrical quantum wire are theoretically investigated in detail. The quantum wire is assumed to GaAs material surrounded by the infinite potential barrier. The results show that the external electric field removes the degeneracy of the electron or hole states. The energy levels of electron and hole, exciton binding energy, excitonic absorption coefficient and absorption energy decrease with increasing the strength of the electric field or the wire radius. The effects of the electric field become more significant for wide wires. The phenomena can be explained by the reduced spatial overlap of ground electron and hole states.  相似文献   

16.
The optical absorption properties of bilayer zigzag-edge graphene nanoribbons (BL-ZGNRs) with external transverse electric fields are investigated by taking into account the Coulomb interaction effect in the Hartree-Fock approximation. We study the phase transitions of BL-ZGNRs induced by external electric fields and also the optical selection rules for the incident light polarized along the longitudinal and transverse directions. We find that the excitations from the edge states are crucial for the optical properties of BL-ZGNRs in the antiferromagnetic phase. We show that the low energy part of the optical absorption can be modulated by the external transverse electric field, and there is a broad band low frequency absorption enhancement for the transverse-polarized incident light in the charge-polarized state of BL-ZGNRs.  相似文献   

17.
The tight-binding method is employed to investigate the electronic properties of a square graphene quantum dot subject to an in-plane electric field (F). The electronic properties are strongly modified by tuning the field strength or altering the field direction. F will change state energies, alter energy gaps, and induce energy gap modulations. State energies show oscillatory behavior with the change of the field strength. The oscillating amplitude and period are further modulated by the change of the field direction. The field-orientation-dependent electronic properties originate in the geometrical anisotropy of the square graphene quantum dot. Moreover, the density of states (DOS), exhibiting many discrete peaks, directly reveals the characteristic of the electric-field-tunable electronic properties. The number and frequencies of DOS peaks are significantly dependent on the field strength and direction.  相似文献   

18.
张华林  孙琳  王鼎 《物理学报》2016,65(1):16101-016101
基于密度泛函理论的第一性原理方法,研究了含单排线缺陷锯齿型石墨烯纳米带(ZGNR)的电磁性质,主要计算了该缺陷处于不同位置时的能带结构、透射谱、自旋极化电荷密度、总能以及布洛赫态.研究表明,含单排线缺陷的ZGNR和无缺陷的ZGNR在非磁性态和铁磁态下都为金属.虽然都为金属,但其呈金属性的成因有差异.在反铁磁态下,单排线缺陷越靠近ZGNR的边缘,对ZGNR电磁性质的影响越明显,缺陷由ZGNR对称轴线向边缘移动过程中,含单排线缺陷的ZGNR有一个半导体-半金属-金属的相变过程.虽然线缺陷靠近中线的ZGNR为半导体,但由于缺陷引入新的能带,导致含单排线缺陷的ZGNR的带隙小于无缺陷ZGNR的带隙.单排线缺陷紧邻边界时,含缺陷ZGNR最稳定;单排线缺陷位于次近邻边界位置时,含缺陷ZGNR最不稳定.在反铁磁态下,对单排线缺陷位于对称轴线的ZGNR施加适当的横向电场,可以实现半导体到半金属的转变.这些研究结果对于发展基于石墨烯的纳米电子器件有重要的意义.  相似文献   

19.
The electronic properties of an organic molecule under external electric field are investigated based on a single band tight-binding model Hamiltonian and the Green's function approach with the Landauer–Büttiker formalism. These properties are studied for a chain of benzene rings (oligophenylene). A self-consistent calculation is adopted to analyze the external electric field effects on the electronic properties of system. It is shown that variation in electron density and HOMO–LUMO gap of the junction are direction depended on the external electric field strength. Our results show that in the presence of external electric field the transmission, current and tunnel magnetoresistance (TMR) decrease, the negative differential resistance occurs.  相似文献   

20.
T.S. Li  M.F. Lin  J.Y. Wu 《哲学杂志》2013,93(11):1557-1567
In this work, we use the tight-binding model to study the low-energy electronic properties of carbon nanoscrolls subject to the influences of a transverse electric field. A carbon nanoscroll can be considered as an open-ended spirally wrapped graphene nanoribbon. The inter-wall interactions will alter the subband curvature, create additional band-edge states, modify the subband spacing or energy gap, and separate the partial flat bands. Furthermore, the energy band symmetry about the Fermi level is lifted by such interactions. The truncated Archimedean spiral ρ?=?r a θ?+r is used to describe the spiral structures of carbon nanoscrolls. The energy gap is found to oscillate significantly with r, and exhibits complete energy gap modulations. With the inclusion of a transverse electric field, the band structures are further altered. Inter-wall hoppings will cause electron transfers between different atoms leading to distortions of the electron wavefunctions. The main features of the energy dispersions are directly reflected in the density of states. The numbers, heights, and energies of the density of states peaks are dependent on the electric field strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号