首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Abstract This paper deals with a discrete-time batch arrival retrial queue with the server subject to starting failures.Diferent from standard batch arrival retrial queues with starting failures,we assume that each customer after service either immediately returns to the orbit for another service with probabilityθor leaves the system forever with probability 1θ(0≤θ1).On the other hand,if the server is started unsuccessfully by a customer(external or repeated),the server is sent to repair immediately and the customer either joins the orbit with probability q or leaves the system forever with probability 1 q(0≤q1).Firstly,we introduce an embedded Markov chain and obtain the necessary and sufcient condition for ergodicity of this embedded Markov chain.Secondly,we derive the steady-state joint distribution of the server state and the number of customers in the system/orbit at arbitrary time.We also derive a stochastic decomposition law.In the special case of individual arrivals,we develop recursive formulae for calculating the steady-state distribution of the orbit size.Besides,we investigate the relation between our discrete-time system and its continuous counterpart.Finally,some numerical examples show the influence of the parameters on the mean orbit size.  相似文献   

2.
An M/G/1 retrial queue with two-phase service and feedback is studied in this paper, where the server is subject to starting failures and breakdowns during service. Primary customers get in the system according to a Poisson process, and they will receive service immediately if the server is available upon arrival. Otherwise, they will enter a retrial orbit and are queued in the orbit in accordance with a first-come-first-served (FCFS) discipline. Customers are allowed to balk and renege at particular times. All customers demand the first “essential” service, whereas only some of them demand the second “multi-optional” service. It is assumed that the retrial time, service time and repair time of the server are all arbitrarily distributed. The necessary and sufficient condition for the system stability is derived. Using a supplementary variable method, the steady-state solutions for some queueing and reliability measures of the system are obtained.  相似文献   

3.
An M[X]/G/1 retrial G-queue with single vacation and unreliable server is investigated in this paper. Arrivals of positive customers form a compound Poisson process, and positive customers receive service immediately if the server is free upon their arrivals; Otherwise, they may enter a retrial orbit and try their luck after a random time interval. The arrivals of negative customers form a Poisson process. Negative customers not only remove the customer being in service, but also make the server under repair. The server leaves for a single vacation as soon as the system empties. In this paper, we analyze the ergodical condition of this model. By applying the supplementary variables method, we obtain the steady-state solutions for both queueing measures and reliability quantities.  相似文献   

4.
In this paper, we consider a discrete-time preemptive priority queue with different service completion probabilities for two classes of customers, one with high-priority and the other with low-priority. This model corresponds to the classical preemptive priority queueing system with two classes of independent Poisson customers and a single exponential server. Due to the possibility of customers’ arriving and departing at the same time in a discrete-time queue, the model considered in this paper is more complicated than the continuoustime model. In this model, we focus on the characterization of the exact tail asymptotics for the joint stationary distribution of the queue length of the two types of customers, for the two boundary distributions and for the two marginal distributions, respectively. By using generating functions and the kernel method, we get the exact tail asymptotic properties along the direction of the low-priority queue, as well as along the direction of the high-priority queue.  相似文献   

5.
A bulk-arrival single server queueing system with second multi-optional service and unreliable server is studied in this paper. Customers arrive in batches according to a homogeneous Poisson process, all customers demand the first "essential" service, whereas only some of them demand the second "multi-optional" service. The first service time and the second service all have general distribution and they are independent. We assume that the server has a service-phase dependent, exponentially distributed life time as well as a servicephase dependent, generally distributed repair time. Using a supplementary variable method, we obtain the transient and the steady-state solutions for both queueing and reliability measures of interest.  相似文献   

6.
In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of arrival,that is,a first-in-first-out disciple,and among groups,jobs are served under a pre-emptiveresume priority disciple.We show that if the input data(i.e.,the arrival and service processe) satisfy an approximation(such as the functional law-of-iterated logarithm approximation or the strong approximation),the output data(the departure processes) and the performance measures(such as the queue length,the work load and the sojourn time process) satisfy a similar approximation.  相似文献   

7.
In applying any numerical method such as the bisection method to determine a root, it is important to realize that the best we can usually achieve is an approximation ofthe exact root. At each iteration of the method,we obtain a better estimate of the root. Thus it becomes desirable that we be able to estimate how accurate the approximation is at each stage so that we know when to stop the process.With the bisection method,suppose we know that there is a root in some interval [a,b], where a and b are successive integers, say 2 and 3. If we select the midpoint M1 of this interval, then it is obvious that the root R is  相似文献   

8.
This paper concerns a discrete-time Geo/Geo/1 retrial queue with both positive and negative customers where the server is subject to breakdowns and repairs due to negative arrivals. The arrival of a negative customer causes one positive customer to be killed if any is present, and simultaneously breaks the server down. The server is sent to repair immediately and after repair it is as good as new. The negative customer also causes the server breakdown if the server is found idle, but has no effect on the system if the server is under repair. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating function of the number of customers in the orbit and in the system are also obtained, along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, we present some numerical examples to illustrate the influence of the parameters on several performance characteristics of the system.  相似文献   

9.
付乳燕  林琳 《数学季刊》2022,(4):403-411
We consider parallel-batch machines scheduling problem with a single server to minimize the maximum completion time. Jobs arrive over time. Every batch has to be loaded by the sever before being processed on machines. The loading(setup) operation of a batch occurs only when some machine is idle, and the server can perform only one setup operation every time. For some special case, we provide a best possible online algorithm with competitive ratio ■. For general case, we give another online algor...  相似文献   

10.
The queue-length distribution for Mx/G1 queue with single server vacation   总被引:3,自引:0,他引:3  
1 IntroductionDuring recent decades many authors studied M/G/l queues with server vacations (seeRefS[1 ~ 6]). They not only studied the stocliastic decomposition properties of the queue lengthand waiting time when the system is in equilibrium, but also studied its transient and equilibrium distributions. Although Baba[7] studied bulk-arrival M"/G/1 with vacation time andShils] studied a kind of M"/G(M/H)/1 queue with repairable service station, they didll't studythe transient and equilibr…  相似文献   

11.
Eliazar  Iddo  Fibich  Gadi  Yechiali  Uri 《Queueing Systems》2002,42(4):325-353
Two random traffic streams are competing for the service time of a single server (multiplexer). The streams form two queues, primary (queue 1) and secondary (queue 0). The primary queue is served exhaustively, after which the server switches over to queue 0. The duration of time the server resides in the secondary queue is determined by the dynamic evolution in queue 1. If there is an arrival to queue 1 while the server is still working in queue 0, the latter is immediately gated, and the server completes service there only to the gated jobs, upon which it switches back to the primary queue. We formulate this system as a two-queue polling model with a single alternating server and with randomly-timed gated (RTG) service discipline in queue 0, where the timer there depends on the arrival stream to the primary queue. We derive Laplace–Stieltjes transforms and generating functions for various key variables and calculate numerous performance measures such as mean queue sizes at polling instants and at an arbitrary moment, mean busy period duration and mean cycle time length, expected number of messages transmitted during a busy period and mean waiting times. Finally, we present graphs of numerical results comparing the mean waiting times in the two queues as functions of the relative loads, showing the effect of the RTG regime.  相似文献   

12.
In this paper we consider a single-server, cyclic polling system with switch-over times and Poisson arrivals. The service disciplines that are discussed, are exhaustive and gated service. The novel contribution of the present paper is that we consider the reneging of customers at polling instants. In more detail, whenever the server starts or ends a visit to a queue, some of the customers waiting in each queue leave the system before having received service. The probability that a certain customer leaves the queue, depends on the queue in which the customer is waiting, and on the location of the server. We show that this system can be analysed by introducing customer subtypes, depending on their arrival periods, and keeping track of the moment when they abandon the system. In order to determine waiting time distributions, we regard the system as a polling model with varying arrival rates, and apply a generalised version of the distributional form of Little??s law. The marginal queue length distribution can be found by conditioning on the state of the system (position of the server, and whether it is serving or switching).  相似文献   

13.
We consider a polling model of two M/G/1 queues, served by a single server. The service policy for this polling model is of threshold type. Service at queue 1 is exhaustive. Service at queue 2 is exhaustive unless the size of queue 1 reaches some level T during a service at queue 2; in the latter case the server switches to queue 1 at the end of that service. Both zero- and nonzero switchover times are considered. We derive exact expressions for the joint queue length distribution at customer departure epochs, and for the steady-state queue-length and sojourn time distributions. In addition, we supply a simple and very accurate approximation for the mean queue lengths, which is suitable for optimization purposes.  相似文献   

14.
15.
We study an M/G/1 processor sharing queue with multiple vacations. The server only takes a vacation when the system has become empty. If he finds the system still empty upon return, he takes another vacation, and so on. Successive vacations are identically distributed, with a general distribution. When the service requirements are exponentially distributed we determine the sojourn time distribution of an arbitrary customer. We also show how the same approach can be used to determine the sojourn time distribution in an M/M/1-PS queue of a polling model, under the following constraints: the service discipline at that queue is exhaustive service, the service discipline at each of the other queues satisfies a so-called branching property, and the arrival processes at the various queues are independent Poisson processes. For a general service requirement distribution we investigate both the vacation queue and the polling model, restricting ourselves to the mean sojourn time.  相似文献   

16.
On optimal polling policies   总被引:2,自引:0,他引:2  
In a single-server polling system, the server visits the queues according to a routing policy and while at a queue, serves some or all of the customers there according to a service policy. A polling (or scheduling) policy is a sequence of decisions on whether to serve a customer, idle the server, or switch the server to another queue. The goal of this paper is to find polling policies that stochastically minimize the unfinished work and the number of customers in the system at all times. This optimization problem is decomposed into three subproblems: determine the optimal action (i.e., serve, switch, idle) when the server is at a nonempty queue; determine the optimal action (i.e., switch, idle) when the server empties a queue; determine the optimal routing (i.e., choice of the queue) when the server decides to switch. Under fairly general assumptions, we show for the first subproblem that optimal policies are greedy and exhaustive, i.e., the server should neither idle nor switch when it is at a nonempty queue. For the second subproblem, we prove that in symmetric polling systems patient policies are optimal, i.e., the server should stay idling at the last visited queue whenever the system is empty. When the system is slotted, we further prove that non-idling and impatient policies are optimal. For the third subproblem, we establish that in symmetric polling systems optimal policies belong to the class of Stochastically Largest Queue (SLQ) policies. An SLQ policy is one that never routes the server to a queue known to have a queue length that is stochastically smaller than that of another queue. This result implies, in particular, that the policy that routes the server to the queue with the largest queue length is optimal when all queue lengths are known and that the cyclic routing policy is optimal in the case that the only information available is the previous decisions.This work was supported in part by NSF under Contract ASC-8802764.  相似文献   

17.
We consider two-queue polling models with the special feature that a timer mechanism is employed at Q 1: whenever the server polls Q 1 and finds it empty, it activates a timer and remains dormant, waiting for the first arrival. If such an arrival occurs before the timer expires, a busy period starts in accordance with Q 1's service discipline. However, if the timer is shorter than the interarrival time to Q 1, the server does not wait any more and switches back to Q 2. We consider three configurations: (i) Q 1 is controlled by the 1-limited protocol while Q 2 is served exhaustively, (ii) Q 1 employs the exhaustive regime while Q 2 follows the 1-limited procedure, and (iii) both queues are served exhaustively. In all cases, we assume Poisson arrivals and allow general service and switchover time distributions. Our main results include the queue length distributions at polling instants, the waiting time distributions and the distribution of the total workload in the system.  相似文献   

18.
Fiems  Dieter  Bruneel  Herwig 《Queueing Systems》2002,42(3):243-254
We consider a discrete-time GI-G-1 queueing system with server vacations. Vacations occur whenever the queue becomes empty or whenever a timer expires. When the timer expires one of the following four actions are considered: the server completes transmission of the present packet before leaving for a vacation, the service immediately leaves for a vacation and the interrupted packet's service is either continued, repeated or resampled and repeated after the vacation. Using a probability generating functions approach, we derive various performance measures such as moments of the buffer contents at various time epochs in equilibrium and moments of the packet delay in equilibrium. By means of an example, we then compare the operation modes under consideration.  相似文献   

19.
This paper considers polling systems with an autonomous server that remains at a queue for an exponential amount of time before moving to a next queue incurring a generally distributed switch-over time. The server remains at a queue until the exponential visit time expires, also when the queue becomes empty. If the queue is not empty when the visit time expires, service is preempted upon server departure, and repeated when the server returns to the queue. The paper first presents a necessary and sufficient condition for stability, and subsequently analyzes the joint queue-length distribution via an embedded Markov chain approach. As the autonomous exponential visit times may seem to result in a system that closely resembles a system of independent queues, we explicitly investigate the approximation of our system via a system of independent vacation queues. This approximation is accurate for short visit times only.   相似文献   

20.
A single server attends to two separate queues. Each queue has Poisson arrivals and exponential service. There is a switching cost whenever the server switches from one queue to another. The objective is to minimize the discounted or average holding and switching costs over a finite or an infinite horizon. We show numerically that the optimal assignment policy is characterized by a switching curve. We also show that the optimal policy is monotonic in the following senses: If it is optimal to switch from queue one to queue two, then it is optimal to continue serve queue two whenever the number of customers in queue one or in queue two decreases or increases, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号